Spaces:
Running
Running
trobet
commited on
Commit
·
daa40a8
1
Parent(s):
97be51f
Scrum paraphrase-MiniLM DeepSeek-R1-Distill-Llama-70B
Browse files- .gitattributes +2 -0
- .gitignore +5 -0
- README.md +24 -5
- app.py +92 -0
- data/2020-Scrum-Guide-English.pdf +3 -0
- data/2020-Scrum-Guide-French.pdf +3 -0
- requirements.txt +102 -0
.gitattributes
CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
*.pdf filter=lfs diff=lfs merge=lfs -text
|
37 |
+
*.docx filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/.streamlit
|
2 |
+
/.venv
|
3 |
+
/storage
|
4 |
+
/.idea
|
5 |
+
|
README.md
CHANGED
@@ -1,13 +1,32 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
colorTo: blue
|
6 |
sdk: streamlit
|
7 |
sdk_version: 1.42.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
-
short_description:
|
11 |
---
|
12 |
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
title: Test
|
3 |
+
emoji: 📚
|
4 |
+
colorFrom: purple
|
5 |
colorTo: blue
|
6 |
sdk: streamlit
|
7 |
sdk_version: 1.42.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
+
short_description: First Space
|
11 |
---
|
12 |
|
13 |
+
# Introduction
|
14 |
+
|
15 |
+
This is a RAG showcase easily adaptable for any set of documents (mainly pdf, docx, txt, csv).
|
16 |
+
|
17 |
+
# How to run it locally ?
|
18 |
+
|
19 |
+
* Clone the git repository
|
20 |
+
* Replace the documents in ./data by your documents
|
21 |
+
* Customize the constants at the beginning of app.py
|
22 |
+
* Create a .streamlit directory
|
23 |
+
* Create a .streamlit/secrets.toml file :
|
24 |
+
`openai_key="your-akash-api-key"` (get your free key here : https://chatapi.akash.network/ > Get Started)
|
25 |
+
* With .venv activated : `pip install -r requirements.txt`
|
26 |
+
* Then `python -m streamlit run app.py`
|
27 |
+
|
28 |
+
***Note*** : Every time you change the embedding model, it's necessary to delete the "storage" directory to rebuild the local vector db
|
29 |
+
|
30 |
+
# How to run it on a new HuggingFace Space ?
|
31 |
+
|
32 |
+
When it runs locally, just commit and push to a new HuggingFace Space. You need to fill your Akash api key as a Secret in the "Settings > Variables and secrets" section of your space.
|
app.py
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import os
|
3 |
+
import time
|
4 |
+
|
5 |
+
import streamlit as st
|
6 |
+
import torch
|
7 |
+
import sys
|
8 |
+
|
9 |
+
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Settings, StorageContext, load_index_from_storage
|
10 |
+
from llama_index.core.chat_engine.types import ChatMode
|
11 |
+
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
12 |
+
from llama_index.llms.openai_like import OpenAILike
|
13 |
+
|
14 |
+
PAGE_TITLE="Votre expert SCRUM"
|
15 |
+
CHAT_TITLE="Posez-moi une question sur le guide Scrum 2020 (anglais ou français)"
|
16 |
+
SYSTEM_PROMPT="Use the context information provided to assist the user. Mention the origins of the informations at the bottom of the response (file and page)."
|
17 |
+
EMBEDDING_MODEL="sentence-transformers/paraphrase-MiniLM-L6-v2" # Fast embedding model
|
18 |
+
#EMBEDDING_MODEL="BAAI/bge-m3" # Multilingual large model
|
19 |
+
LLM_MODEL="DeepSeek-R1-Distill-Llama-70B" # Available models on : https://chatapi.akash.network/documentation#models
|
20 |
+
NB_DOC_CHUNKS_TO_SEND=5
|
21 |
+
MAX_NB_TOKENS_IN_RESPONSE=1500
|
22 |
+
TEMPERATURE=0.2 # The closer to 1, the less deterministic and the more creative
|
23 |
+
|
24 |
+
API_BASE_URL="https://chatapi.akash.network/api/v1" # Changing this requires to adapt the custom_llm initialization
|
25 |
+
|
26 |
+
# Ajuster le chemin de torch.classes pour éviter le conflit
|
27 |
+
torch.classes.__path__ = []
|
28 |
+
|
29 |
+
st.set_page_config(page_title=PAGE_TITLE, layout="centered", initial_sidebar_state="auto", menu_items=None)
|
30 |
+
st.title(PAGE_TITLE)
|
31 |
+
|
32 |
+
custom_llm = OpenAILike(model=LLM_MODEL, api_base=API_BASE_URL, api_key=st.secrets["openai_key"], max_tokens=MAX_NB_TOKENS_IN_RESPONSE, temperature=TEMPERATURE)
|
33 |
+
Settings.embed_model = HuggingFaceEmbedding(model_name=EMBEDDING_MODEL)
|
34 |
+
Settings.llm=custom_llm
|
35 |
+
|
36 |
+
logging.basicConfig(stream=sys.stdout, level=logging.DEBUG)
|
37 |
+
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
|
38 |
+
|
39 |
+
# Load and index data
|
40 |
+
@st.cache_resource
|
41 |
+
def load_data():
|
42 |
+
persist_dir = "./storage"
|
43 |
+
if not os.path.exists(persist_dir):
|
44 |
+
documents = SimpleDirectoryReader(input_dir="./data").load_data()
|
45 |
+
document_index = VectorStoreIndex.from_documents(documents)
|
46 |
+
document_index.storage_context.persist(persist_dir=persist_dir)
|
47 |
+
else:
|
48 |
+
storage_context = StorageContext.from_defaults(persist_dir=persist_dir)
|
49 |
+
document_index = load_index_from_storage(storage_context)
|
50 |
+
return document_index
|
51 |
+
|
52 |
+
start_time = time.time()
|
53 |
+
|
54 |
+
index = load_data()
|
55 |
+
|
56 |
+
end_time = time.time()
|
57 |
+
print(f"Time taken for loading embeddings: {end_time - start_time:.4f} seconds")
|
58 |
+
start_time = time.time()
|
59 |
+
|
60 |
+
if "messages" not in st.session_state.keys(): # Initialize the chat messages history
|
61 |
+
st.session_state.messages = [
|
62 |
+
{
|
63 |
+
"role": "assistant",
|
64 |
+
"content": CHAT_TITLE,
|
65 |
+
}
|
66 |
+
]
|
67 |
+
|
68 |
+
if "chat_engine" not in st.session_state.keys(): # Initialize the chat engine
|
69 |
+
st.session_state.chat_engine = index.as_chat_engine(chat_mode=ChatMode.CONTEXT, system_prompt=SYSTEM_PROMPT, similarity_top_k=NB_DOC_CHUNKS_TO_SEND, verbose=True, streaming=True)
|
70 |
+
|
71 |
+
if prompt := st.chat_input("Posez votre question"): # Prompt for user input and save to chat history
|
72 |
+
st.session_state.messages.append({"role": "user", "content": prompt})
|
73 |
+
|
74 |
+
for message in st.session_state.messages: # Write message history to UI
|
75 |
+
with st.chat_message(message["role"]):
|
76 |
+
st.write(message["content"])
|
77 |
+
|
78 |
+
# If last message is not from assistant, generate a new response
|
79 |
+
if st.session_state.messages[-1]["role"] != "assistant":
|
80 |
+
with st.chat_message("assistant"):
|
81 |
+
|
82 |
+
start_time = time.time()
|
83 |
+
|
84 |
+
response_stream = st.session_state.chat_engine.stream_chat(prompt)
|
85 |
+
st.write_stream(response_stream.response_gen)
|
86 |
+
message = {"role": "assistant", "content": response_stream.response}
|
87 |
+
# Add response to message history
|
88 |
+
st.session_state.messages.append(message)
|
89 |
+
|
90 |
+
end_time = time.time()
|
91 |
+
print(f"Time taken for getting response: {end_time - start_time:.4f} seconds")
|
92 |
+
start_time = time.time()
|
data/2020-Scrum-Guide-English.pdf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ed83eb2378459c9e5da5e695844a24c3770fba33687cafaf0a0683ad5070b3ec
|
3 |
+
size 254353
|
data/2020-Scrum-Guide-French.pdf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0dd5b8f5af1f90ac81caac4194cf3cb73daef99eadfdf3799c669ad796cd3ba3
|
3 |
+
size 306931
|
requirements.txt
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
aiohappyeyeballs==2.4.6
|
2 |
+
aiohttp==3.11.12
|
3 |
+
aiosignal==1.3.2
|
4 |
+
altair==5.5.0
|
5 |
+
annotated-types==0.7.0
|
6 |
+
anyio==4.8.0
|
7 |
+
attrs==25.1.0
|
8 |
+
beautifulsoup4==4.13.3
|
9 |
+
blinker==1.9.0
|
10 |
+
cachetools==5.5.1
|
11 |
+
certifi==2025.1.31
|
12 |
+
charset-normalizer==3.4.1
|
13 |
+
click==8.1.8
|
14 |
+
colorama==0.4.6
|
15 |
+
dataclasses-json==0.6.7
|
16 |
+
Deprecated==1.2.18
|
17 |
+
dirtyjson==1.0.8
|
18 |
+
distro==1.9.0
|
19 |
+
embeddings==0.0.8
|
20 |
+
filelock==3.17.0
|
21 |
+
filetype==1.2.0
|
22 |
+
frozenlist==1.5.0
|
23 |
+
fsspec==2025.2.0
|
24 |
+
gitdb==4.0.12
|
25 |
+
GitPython==3.1.44
|
26 |
+
greenlet==3.1.1
|
27 |
+
h11==0.14.0
|
28 |
+
httpcore==1.0.7
|
29 |
+
httpx==0.28.1
|
30 |
+
huggingface-hub==0.28.1
|
31 |
+
idna==3.10
|
32 |
+
Jinja2==3.1.5
|
33 |
+
jiter==0.8.2
|
34 |
+
joblib==1.4.2
|
35 |
+
jsonschema==4.23.0
|
36 |
+
jsonschema-specifications==2024.10.1
|
37 |
+
llama-index-core==0.12.16.post1
|
38 |
+
llama-index-embeddings-huggingface==0.5.1
|
39 |
+
llama-index-llms-openai==0.3.18
|
40 |
+
llama-index-llms-openai-like==0.3.3
|
41 |
+
llama-index-readers-file==0.4.4
|
42 |
+
markdown-it-py==3.0.0
|
43 |
+
MarkupSafe==3.0.2
|
44 |
+
marshmallow==3.26.1
|
45 |
+
mdurl==0.1.2
|
46 |
+
mpmath==1.3.0
|
47 |
+
multidict==6.1.0
|
48 |
+
mypy-extensions==1.0.0
|
49 |
+
narwhals==1.25.2
|
50 |
+
nest-asyncio==1.6.0
|
51 |
+
networkx==3.4.2
|
52 |
+
nltk==3.9.1
|
53 |
+
numpy==2.2.2
|
54 |
+
openai==1.61.1
|
55 |
+
packaging==24.2
|
56 |
+
pandas==2.2.3
|
57 |
+
pillow==11.1.0
|
58 |
+
propcache==0.2.1
|
59 |
+
protobuf==5.29.3
|
60 |
+
pyarrow==19.0.0
|
61 |
+
pydantic==2.10.6
|
62 |
+
pydantic_core==2.27.2
|
63 |
+
pydeck==0.9.1
|
64 |
+
Pygments==2.19.1
|
65 |
+
pypdf==5.3.0
|
66 |
+
python-dateutil==2.9.0.post0
|
67 |
+
pytz==2025.1
|
68 |
+
PyYAML==6.0.2
|
69 |
+
referencing==0.36.2
|
70 |
+
regex==2024.11.6
|
71 |
+
requests==2.32.3
|
72 |
+
rich==13.9.4
|
73 |
+
rpds-py==0.22.3
|
74 |
+
safetensors==0.5.2
|
75 |
+
scikit-learn==1.6.1
|
76 |
+
scipy==1.15.1
|
77 |
+
sentence-transformers==3.4.1
|
78 |
+
setuptools==75.8.0
|
79 |
+
six==1.17.0
|
80 |
+
smmap==5.0.2
|
81 |
+
sniffio==1.3.1
|
82 |
+
soupsieve==2.6
|
83 |
+
SQLAlchemy==2.0.38
|
84 |
+
streamlit==1.42.0
|
85 |
+
striprtf==0.0.26
|
86 |
+
sympy==1.13.1
|
87 |
+
tenacity==9.0.0
|
88 |
+
threadpoolctl==3.5.0
|
89 |
+
tiktoken==0.8.0
|
90 |
+
tokenizers==0.21.0
|
91 |
+
toml==0.10.2
|
92 |
+
torch==2.6.0
|
93 |
+
tornado==6.4.2
|
94 |
+
tqdm==4.67.1
|
95 |
+
transformers==4.48.3
|
96 |
+
typing-inspect==0.9.0
|
97 |
+
typing_extensions==4.12.2
|
98 |
+
tzdata==2025.1
|
99 |
+
urllib3==2.3.0
|
100 |
+
watchdog==6.0.0
|
101 |
+
wrapt==1.17.2
|
102 |
+
yarl==1.18.3
|