Spaces:
Running
Running
import logging | |
import os | |
import time | |
import streamlit as st | |
import torch | |
import sys | |
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Settings, StorageContext, load_index_from_storage | |
from llama_index.core.chat_engine.types import ChatMode | |
from llama_index.embeddings.huggingface import HuggingFaceEmbedding | |
from llama_index.llms.openai_like import OpenAILike | |
PAGE_TITLE="Votre expert Scrum" | |
CHAT_TITLE="Posez-moi une question sur le guide Scrum 2020 (anglais ou français)" | |
SYSTEM_PROMPT="Use the context information provided to assist the user. Mention the origins of the informations at the bottom of the response (file and page)." | |
#EMBEDDING_MODEL="sentence-transformers/paraphrase-MiniLM-L6-v2" # Fast embedding model | |
EMBEDDING_MODEL="BAAI/bge-small-en-v1.5" | |
#EMBEDDING_MODEL="BAAI/bge-m3" # Multilingual large model | |
#LLM_MODEL="DeepSeek-R1-Distill-Llama-70B" # Available models on : https://chatapi.akash.network/documentation#models | |
LLM_MODEL="DeepSeek-R1-Distill-Qwen-32B" | |
NB_DOC_CHUNKS_TO_SEND=5 | |
MAX_NB_TOKENS_IN_RESPONSE=1500 | |
TEMPERATURE=0.5 # The closer to 1, the less deterministic and the more creative | |
API_BASE_URL="https://chatapi.akash.network/api/v1" # Changing this requires to adapt the custom_llm initialization | |
# Ajuster le chemin de torch.classes pour éviter le conflit | |
torch.classes.__path__ = [] | |
st.set_page_config(page_title=PAGE_TITLE, layout="centered", initial_sidebar_state="auto", menu_items=None) | |
st.title(PAGE_TITLE) | |
custom_llm = OpenAILike(model=LLM_MODEL, api_base=API_BASE_URL, api_key=st.secrets["openai_key"], max_tokens=MAX_NB_TOKENS_IN_RESPONSE, temperature=TEMPERATURE) | |
Settings.embed_model = HuggingFaceEmbedding(model_name=EMBEDDING_MODEL) | |
Settings.llm=custom_llm | |
logging.basicConfig(stream=sys.stdout, level=logging.DEBUG) | |
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) | |
# Load and index data | |
def load_data(): | |
persist_dir = "./storage" | |
if not os.path.exists(persist_dir): | |
documents = SimpleDirectoryReader(input_dir="./data").load_data() | |
document_index = VectorStoreIndex.from_documents(documents) | |
document_index.storage_context.persist(persist_dir=persist_dir) | |
else: | |
storage_context = StorageContext.from_defaults(persist_dir=persist_dir) | |
document_index = load_index_from_storage(storage_context) | |
return document_index | |
start_time = time.time() | |
index = load_data() | |
end_time = time.time() | |
print(f"Time taken for loading embeddings: {end_time - start_time:.4f} seconds") | |
start_time = time.time() | |
if "messages" not in st.session_state.keys(): # Initialize the chat messages history | |
st.session_state.messages = [ | |
{ | |
"role": "assistant", | |
"content": CHAT_TITLE, | |
} | |
] | |
if "chat_engine" not in st.session_state.keys(): # Initialize the chat engine | |
st.session_state.chat_engine = index.as_chat_engine(chat_mode=ChatMode.CONTEXT, system_prompt=SYSTEM_PROMPT, similarity_top_k=NB_DOC_CHUNKS_TO_SEND, verbose=True, streaming=True) | |
if prompt := st.chat_input("Posez votre question"): # Prompt for user input and save to chat history | |
st.session_state.messages.append({"role": "user", "content": prompt}) | |
for message in st.session_state.messages: # Write message history to UI | |
with st.chat_message(message["role"]): | |
st.write(message["content"]) | |
# If last message is not from assistant, generate a new response | |
if st.session_state.messages[-1]["role"] != "assistant": | |
with st.chat_message("assistant"): | |
start_time = time.time() | |
response_stream = st.session_state.chat_engine.stream_chat(prompt) | |
st.write_stream(response_stream.response_gen) | |
message = {"role": "assistant", "content": response_stream.response} | |
# Add response to message history | |
st.session_state.messages.append(message) | |
end_time = time.time() | |
print(f"Time taken for getting response: {end_time - start_time:.4f} seconds") | |
start_time = time.time() | |