Towhidul's picture
Update app.py
2c2454d verified
raw
history blame
9.14 kB
import streamlit as st
import os
import nest_asyncio
import re
from pathlib import Path
import typing as t
import base64
from mimetypes import guess_type
from llama_parse import LlamaParse
from llama_index.core.schema import TextNode
from llama_index.core import VectorStoreIndex, StorageContext, load_index_from_storage, Settings
from llama_index.embeddings.openai import OpenAIEmbedding
from llama_index.llms.openai import OpenAI
from llama_index.core.query_engine import CustomQueryEngine
from llama_index.multi_modal_llms.openai import OpenAIMultiModal
from llama_index.core.prompts import PromptTemplate
from llama_index.core.schema import ImageNode
from llama_index.core.base.response.schema import Response
from typing import Any, List, Optional, Tuple
from llama_index.core.postprocessor.types import BaseNodePostprocessor
from llama_index.core.query_engine import CustomQueryEngine
from llama_index.core.retrievers import BaseRetriever
from llama_index.multi_modal_llms.openai import OpenAIMultiModal
from llama_index.core.schema import NodeWithScore, MetadataMode, QueryBundle
from llama_index.core.base.response.schema import Response
from llama_index.core.prompts import PromptTemplate
from llama_index.core.schema import ImageNode
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.prompts import HumanMessagePromptTemplate
from langchain_core.messages import SystemMessage
nest_asyncio.apply()
# Setting API keys
os.environ["OPENAI_API_KEY"] = os.getenv('OPENAI_API_KEY')
os.environ["LLAMA_CLOUD_API_KEY"] = os.getenv('LLAMA_CLOUD_API_KEY')
# Initialize Streamlit app
st.title("Medical Knowledge Base & Query System")
st.sidebar.title("Settings")
# User input for file upload
st.sidebar.subheader("Upload Knowledge Base")
uploaded_file = st.sidebar.file_uploader("Upload a medical text book (pdf)", type=["jpg", "png", "pdf"])
# # Ensure the 'files' directory exists
# if not os.path.exists("files"):
# os.makedirs("files")
# Initialize the parser
parser = LlamaParse(
result_type="markdown",
parsing_instruction="You are given a medical textbook on medicine",
use_vendor_multimodal_model=True,
vendor_multimodal_model_name="gpt-4o-mini-2024-07-18",
show_progress=True,
verbose=True,
invalidate_cache=True,
do_not_cache=True,
num_workers=8,
language="en"
)
# Initialize md_json_objs as an empty list
md_json_objs = []
# Upload and process file
if uploaded_file:
st.sidebar.write("Processing file...")
file_path = f"{uploaded_file.name}"
with open(file_path, "wb") as f:
f.write(uploaded_file.read())
# Parse the uploaded image
md_json_objs = parser.get_json_result([file_path])
image_dicts = parser.get_images(md_json_objs, download_path="data_images")
# Extract and display parsed information
st.write("File successfully processed!")
st.write(f"Processed file: {uploaded_file.name}")
# Function to encode image to data URL
def local_image_to_data_url(image_path):
mime_type, _ = guess_type(image_path)
if mime_type is None:
mime_type = 'image/png'
with open(image_path, "rb") as image_file:
base64_encoded_data = base64.b64encode(image_file.read()).decode('utf-8')
return f"data:{mime_type};base64,{base64_encoded_data}"
# Function to get sorted image files
def get_page_number(file_name):
match = re.search(r"-page-(\d+)\.jpg$", str(file_name))
if match:
return int(match.group(1))
return 0
def _get_sorted_image_files(image_dir):
raw_files = [f for f in list(Path(image_dir).iterdir()) if f.is_file()]
sorted_files = sorted(raw_files, key=get_page_number)
return sorted_files
def get_text_nodes(md_json_objs, image_dir) -> t.List[TextNode]:
nodes = []
for result in md_json_objs:
json_dicts = result["pages"]
document_name = result["file_path"].split('/')[-1]
docs = [doc["md"] for doc in json_dicts]
image_files = _get_sorted_image_files(image_dir)
for idx, doc in enumerate(docs):
node = TextNode(
text=doc,
metadata={"image_path": str(image_files[idx]), "page_num": idx + 1, "document_name": document_name},
)
nodes.append(node)
return nodes
# Load text nodes if md_json_objs is not empty
if md_json_objs:
text_nodes = get_text_nodes(md_json_objs, "data_images")
else:
text_nodes = []
# Setup index and LLM
embed_model = OpenAIEmbedding(model="text-embedding-3-large")
llm = OpenAI("gpt-4o-mini-2024-07-18")
Settings.llm = llm
Settings.embed_model = embed_model
if not os.path.exists("storage_manuals"):
index = VectorStoreIndex(text_nodes, embed_model=embed_model)
index.storage_context.persist(persist_dir="./storage_manuals")
else:
ctx = StorageContext.from_defaults(persist_dir="./storage_manuals")
index = load_index_from_storage(ctx)
retriever = index.as_retriever()
# Query input
st.subheader("Ask a Question")
query_text = st.text_input("Enter your query:")
uploaded_query_image = st.file_uploader("Upload a query image (if any):", type=["jpg", "png"])
# Encode query image if provided
encoded_image_url = None
if uploaded_query_image:
query_image_path = f"{uploaded_query_image.name}"
with open(query_image_path, "wb") as img_file:
img_file.write(uploaded_query_image.read())
encoded_image_url = local_image_to_data_url(query_image_path)
# Setup query engine
QA_PROMPT_TMPL = """
You are a friendly medical chatbot designed to assist users by providing accurate and detailed responses to medical questions based on information from medical books.
### Context:
---------------------
{context_str}
---------------------
### Query Text:
{query_str}
### Query Image:
---------------------
{encoded_image_url}
---------------------
### Answer:
"""
QA_PROMPT = PromptTemplate(QA_PROMPT_TMPL)
gpt_4o_mm = OpenAIMultiModal(model="gpt-4o-mini-2024-07-18")
# class MultimodalQueryEngine(CustomQueryEngine):
# # def __init__(self, qa_prompt, retriever, multi_modal_llm, node_postprocessors=[]):
# # super().__init__(qa_prompt=qa_prompt, retriever=retriever, multi_modal_llm=multi_modal_llm, node_postprocessors=node_postprocessors)
# # def custom_query(self, query_str):
# # nodes = self.retriever.retrieve(query_str)
# # image_nodes = [NodeWithScore(node=ImageNode(image_path=n.node.metadata["image_path"])) for n in nodes]
# # ctx_str = "\n\n".join([r.node.get_content().strip() for r in nodes])
# # fmt_prompt = self.qa_prompt.format(context_str=ctx_str, query_str=query_str, encoded_image_url=encoded_image_url)
# # llm_response = self.multi_modal_llm.complete(prompt=fmt_prompt, image_documents=[image_node.node for image_node in image_nodes])
# # return Response(response=str(llm_response), source_nodes=nodes, metadata={"text_nodes": text_nodes, "image_nodes": image_nodes})
class MultimodalQueryEngine(CustomQueryEngine):
qa_prompt: PromptTemplate
retriever: BaseRetriever
multi_modal_llm: OpenAIMultiModal
node_postprocessors: Optional[List[BaseNodePostprocessor]]
def __init__(
self,
qa_prompt: PromptTemplate,
retriever: BaseRetriever,
multi_modal_llm: OpenAIMultiModal,
node_postprocessors: Optional[List[BaseNodePostprocessor]] = [],
):
super().__init__(
qa_prompt=qa_prompt,
retriever=retriever,
multi_modal_llm=multi_modal_llm,
node_postprocessors=node_postprocessors
)
def custom_query(self, query_str: str):
# retrieve most relevant nodes
nodes = self.retriever.retrieve(query_str)
for postprocessor in self.node_postprocessors:
nodes = postprocessor.postprocess_nodes(
nodes, query_bundle=QueryBundle(query_str)
)
# create image nodes from the image associated with those nodes
image_nodes = [
NodeWithScore(node=ImageNode(image_path=n.node.metadata["image_path"]))
for n in nodes
]
# create context string from parsed markdown text
ctx_str = "\n\n".join(
[r.node.get_content(metadata_mode=MetadataMode.LLM).strip() for r in nodes]
)
# prompt for the LLM
fmt_prompt = self.qa_prompt.format(
context_str=ctx_str, query_str=query_str, encoded_image_url=encoded_image_url
)
# use the multimodal LLM to interpret images and generate a response to the prompt
llm_response = self.multi_modal_llm.complete(
prompt=fmt_prompt,
image_documents=[image_node.node for image_node in image_nodes],
)
return Response(
response=str(llm_response),
source_nodes=nodes,
metadata={"text_nodes": nodes, "image_nodes": image_nodes},
)
query_engine = MultimodalQueryEngine(QA_PROMPT, retriever, gpt_4o_mm)
# Handle query
if query_text:
st.write("Querying...")
response = query_engine.custom_query(query_text)
st.markdown(response.response)