Spaces:
Sleeping
Sleeping
import streamlit as st | |
import os | |
import nest_asyncio | |
import re | |
from pathlib import Path | |
import typing as t | |
import base64 | |
from mimetypes import guess_type | |
from llama_parse import LlamaParse | |
from llama_index.core.schema import TextNode | |
from llama_index.core import VectorStoreIndex, StorageContext, load_index_from_storage, Settings | |
from llama_index.embeddings.openai import OpenAIEmbedding | |
from llama_index.llms.openai import OpenAI | |
from llama_index.core.query_engine import CustomQueryEngine | |
from llama_index.multi_modal_llms.openai import OpenAIMultiModal | |
from llama_index.core.prompts import PromptTemplate | |
from llama_index.core.schema import ImageNode | |
from llama_index.core.base.response.schema import Response | |
from typing import Any, List, Optional, Tuple | |
from llama_index.core.postprocessor.types import BaseNodePostprocessor | |
from llama_index.core.query_engine import CustomQueryEngine | |
from llama_index.core.retrievers import BaseRetriever | |
from llama_index.multi_modal_llms.openai import OpenAIMultiModal | |
from llama_index.core.schema import NodeWithScore, MetadataMode, QueryBundle | |
from llama_index.core.base.response.schema import Response | |
from llama_index.core.prompts import PromptTemplate | |
from llama_index.core.schema import ImageNode | |
from langchain_core.prompts import ChatPromptTemplate | |
from langchain_core.prompts import HumanMessagePromptTemplate | |
from langchain_core.messages import SystemMessage | |
nest_asyncio.apply() | |
# Setting API keys | |
os.environ["OPENAI_API_KEY"] = os.getenv('OPENAI_API_KEY') | |
os.environ["LLAMA_CLOUD_API_KEY"] = os.getenv('LLAMA_CLOUD_API_KEY') | |
# Initialize Streamlit app | |
st.title("Medical Knowledge Base & Query System") | |
st.sidebar.title("Settings") | |
# User input for file upload | |
st.sidebar.subheader("Upload Knowledge Base") | |
uploaded_file = st.sidebar.file_uploader("Upload a medical text book (pdf)", type=["jpg", "png", "pdf"]) | |
# # Ensure the 'files' directory exists | |
# if not os.path.exists("files"): | |
# os.makedirs("files") | |
# Initialize the parser | |
parser = LlamaParse( | |
result_type="markdown", | |
parsing_instruction="You are given a medical textbook on medicine", | |
use_vendor_multimodal_model=True, | |
vendor_multimodal_model_name="gpt-4o-mini-2024-07-18", | |
show_progress=True, | |
verbose=True, | |
invalidate_cache=True, | |
do_not_cache=True, | |
num_workers=8, | |
language="en" | |
) | |
# Initialize md_json_objs as an empty list | |
md_json_objs = [] | |
# Upload and process file | |
if uploaded_file: | |
st.sidebar.write("Processing file...") | |
file_path = f"{uploaded_file.name}" | |
with open(file_path, "wb") as f: | |
f.write(uploaded_file.read()) | |
# Parse the uploaded image | |
md_json_objs = parser.get_json_result([file_path]) | |
image_dicts = parser.get_images(md_json_objs, download_path="data_images") | |
# Extract and display parsed information | |
st.write("File successfully processed!") | |
st.write(f"Processed file: {uploaded_file.name}") | |
# Function to encode image to data URL | |
def local_image_to_data_url(image_path): | |
mime_type, _ = guess_type(image_path) | |
if mime_type is None: | |
mime_type = 'image/png' | |
with open(image_path, "rb") as image_file: | |
base64_encoded_data = base64.b64encode(image_file.read()).decode('utf-8') | |
return f"data:{mime_type};base64,{base64_encoded_data}" | |
# Function to get sorted image files | |
def get_page_number(file_name): | |
match = re.search(r"-page-(\d+)\.jpg$", str(file_name)) | |
if match: | |
return int(match.group(1)) | |
return 0 | |
def _get_sorted_image_files(image_dir): | |
raw_files = [f for f in list(Path(image_dir).iterdir()) if f.is_file()] | |
sorted_files = sorted(raw_files, key=get_page_number) | |
return sorted_files | |
def get_text_nodes(md_json_objs, image_dir) -> t.List[TextNode]: | |
nodes = [] | |
for result in md_json_objs: | |
json_dicts = result["pages"] | |
document_name = result["file_path"].split('/')[-1] | |
docs = [doc["md"] for doc in json_dicts] | |
image_files = _get_sorted_image_files(image_dir) | |
for idx, doc in enumerate(docs): | |
node = TextNode( | |
text=doc, | |
metadata={"image_path": str(image_files[idx]), "page_num": idx + 1, "document_name": document_name}, | |
) | |
nodes.append(node) | |
return nodes | |
# Load text nodes if md_json_objs is not empty | |
if md_json_objs: | |
text_nodes = get_text_nodes(md_json_objs, "data_images") | |
else: | |
text_nodes = [] | |
# Setup index and LLM | |
embed_model = OpenAIEmbedding(model="text-embedding-3-large") | |
llm = OpenAI("gpt-4o-mini-2024-07-18") | |
Settings.llm = llm | |
Settings.embed_model = embed_model | |
if not os.path.exists("storage_manuals"): | |
index = VectorStoreIndex(text_nodes, embed_model=embed_model) | |
index.storage_context.persist(persist_dir="./storage_manuals") | |
else: | |
ctx = StorageContext.from_defaults(persist_dir="./storage_manuals") | |
index = load_index_from_storage(ctx) | |
retriever = index.as_retriever() | |
# Query input | |
st.subheader("Ask a Question") | |
query_text = st.text_input("Enter your query:") | |
uploaded_query_image = st.file_uploader("Upload a query image (if any):", type=["jpg", "png"]) | |
# Encode query image if provided | |
encoded_image_url = None | |
if uploaded_query_image: | |
query_image_path = f"{uploaded_query_image.name}" | |
with open(query_image_path, "wb") as img_file: | |
img_file.write(uploaded_query_image.read()) | |
encoded_image_url = local_image_to_data_url(query_image_path) | |
# Setup query engine | |
QA_PROMPT_TMPL = """ | |
You are a friendly medical chatbot designed to assist users by providing accurate and detailed responses to medical questions based on information from medical books. | |
### Context: | |
--------------------- | |
{context_str} | |
--------------------- | |
### Query Text: | |
{query_str} | |
### Query Image: | |
--------------------- | |
{encoded_image_url} | |
--------------------- | |
### Answer: | |
""" | |
QA_PROMPT = PromptTemplate(QA_PROMPT_TMPL) | |
gpt_4o_mm = OpenAIMultiModal(model="gpt-4o-mini-2024-07-18") | |
# class MultimodalQueryEngine(CustomQueryEngine): | |
# # def __init__(self, qa_prompt, retriever, multi_modal_llm, node_postprocessors=[]): | |
# # super().__init__(qa_prompt=qa_prompt, retriever=retriever, multi_modal_llm=multi_modal_llm, node_postprocessors=node_postprocessors) | |
# # def custom_query(self, query_str): | |
# # nodes = self.retriever.retrieve(query_str) | |
# # image_nodes = [NodeWithScore(node=ImageNode(image_path=n.node.metadata["image_path"])) for n in nodes] | |
# # ctx_str = "\n\n".join([r.node.get_content().strip() for r in nodes]) | |
# # fmt_prompt = self.qa_prompt.format(context_str=ctx_str, query_str=query_str, encoded_image_url=encoded_image_url) | |
# # llm_response = self.multi_modal_llm.complete(prompt=fmt_prompt, image_documents=[image_node.node for image_node in image_nodes]) | |
# # return Response(response=str(llm_response), source_nodes=nodes, metadata={"text_nodes": text_nodes, "image_nodes": image_nodes}) | |
class MultimodalQueryEngine(CustomQueryEngine): | |
qa_prompt: PromptTemplate | |
retriever: BaseRetriever | |
multi_modal_llm: OpenAIMultiModal | |
node_postprocessors: Optional[List[BaseNodePostprocessor]] | |
def __init__( | |
self, | |
qa_prompt: PromptTemplate, | |
retriever: BaseRetriever, | |
multi_modal_llm: OpenAIMultiModal, | |
node_postprocessors: Optional[List[BaseNodePostprocessor]] = [], | |
): | |
super().__init__( | |
qa_prompt=qa_prompt, | |
retriever=retriever, | |
multi_modal_llm=multi_modal_llm, | |
node_postprocessors=node_postprocessors | |
) | |
def custom_query(self, query_str: str): | |
# retrieve most relevant nodes | |
nodes = self.retriever.retrieve(query_str) | |
for postprocessor in self.node_postprocessors: | |
nodes = postprocessor.postprocess_nodes( | |
nodes, query_bundle=QueryBundle(query_str) | |
) | |
# create image nodes from the image associated with those nodes | |
image_nodes = [ | |
NodeWithScore(node=ImageNode(image_path=n.node.metadata["image_path"])) | |
for n in nodes | |
] | |
# create context string from parsed markdown text | |
ctx_str = "\n\n".join( | |
[r.node.get_content(metadata_mode=MetadataMode.LLM).strip() for r in nodes] | |
) | |
# prompt for the LLM | |
fmt_prompt = self.qa_prompt.format( | |
context_str=ctx_str, query_str=query_str, encoded_image_url=encoded_image_url | |
) | |
# use the multimodal LLM to interpret images and generate a response to the prompt | |
llm_response = self.multi_modal_llm.complete( | |
prompt=fmt_prompt, | |
image_documents=[image_node.node for image_node in image_nodes], | |
) | |
return Response( | |
response=str(llm_response), | |
source_nodes=nodes, | |
metadata={"text_nodes": nodes, "image_nodes": image_nodes}, | |
) | |
query_engine = MultimodalQueryEngine(QA_PROMPT, retriever, gpt_4o_mm) | |
# Handle query | |
if query_text: | |
st.write("Querying...") | |
response = query_engine.custom_query(query_text) | |
st.markdown(response.response) |