Spaces:
Sleeping
Sleeping
import gradio as gr | |
import numpy as np | |
import random | |
#import spaces #[uncomment to use ZeroGPU] | |
from diffusers import DiffusionPipeline | |
import os | |
from diffusers import DPMSolverSinglestepScheduler | |
from PIL import Image, ImageDraw, ImageFont | |
from diffusers.utils import make_image_grid | |
import torch | |
from PIL import Image | |
from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL | |
from diffusers.utils import load_image | |
from diffusers import StableDiffusionXLPipeline,StableDiffusionXLImg2ImgPipeline, DPMSolverMultistepScheduler, AutoencoderTiny, StableDiffusionXLControlNetPipeline, ControlNetModel | |
from diffusers.utils import load_image | |
from diffusers.image_processor import IPAdapterMaskProcessor | |
import torch | |
import os | |
from transformers import CLIPVisionModelWithProjection, CLIPImageProcessor | |
from diffusers.utils import make_image_grid | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
model_repo_id = "stabilityai/sdxl-turbo" #Replace to the model you would like to use | |
if torch.cuda.is_available(): | |
torch_dtype = torch.float16 | |
else: | |
torch_dtype = torch.float32 | |
processor_mask = IPAdapterMaskProcessor() | |
controlnets = [ | |
ControlNetModel.from_pretrained( | |
"diffusers/controlnet-depth-sdxl-1.0",variant="fp16",use_safetensors=True,torch_dtype=torch.float16 | |
), | |
ControlNetModel.from_pretrained( | |
"diffusers/controlnet-canny-sdxl-1.0", torch_dtype=torch.float16, use_safetensors=True,variant="fp16" | |
), | |
] | |
###load pipelines | |
pipe_CN = StableDiffusionXLControlNetPipeline.from_pretrained("SG161222/RealVisXL_V5.0", torch_dtype=torch.float16,controlnet=controlnets, use_safetensors=True, variant='fp16') | |
pipe_CN.vae = AutoencoderTiny.from_pretrained("madebyollin/taesdxl", torch_dtype=torch.float16) | |
pipe_CN.scheduler=DPMSolverMultistepScheduler.from_pretrained("SG161222/RealVisXL_V5.0",subfolder="scheduler",use_karras_sigmas=True) | |
pipe_CN.load_ip_adapter("h94/IP-Adapter", subfolder="sdxl_models", weight_name="ip-adapter_sdxl.bin") | |
pipe_CN.to("cuda") | |
##############################load loras | |
pipe_CN.load_lora_weights('Tonioesparza/ourhood_training_dreambooth_lora_2_0', weight_name='pytorch_lora_weights.safetensors',adapter_name='ourhood') | |
pipe_CN.fuse_lora() | |
refiner = StableDiffusionXLImg2ImgPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0",text_encoder_2=pipe_CN.text_encoder_2,vae=pipe_CN.vae,torch_dtype=torch.float16,use_safetensors=True,variant="fp16") | |
refiner.to("cuda") | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 1024 | |
def ourhood_inference(prompt=str,num_inference_steps=int,scaffold=int,fracc=float): | |
###pro_encode = pipe_cn.encode_text(prompt) | |
### function has no formats defined | |
scaff_dic={1:{'mask1':"https://huggingface.co/Tonioesparza/ourhood_training_dreambooth_lora_2_0/resolve/main/mask_in_square_2.png", | |
'depth_image':"https://huggingface.co/Tonioesparza/ourhood_training_dreambooth_lora_2_0/resolve/main/mask_depth_noroof_square.png", | |
'canny_image':"https://huggingface.co/Tonioesparza/ourhood_training_dreambooth_lora_2_0/resolve/main/mask_depth_solo_square.png"}, | |
2:{'mask1':"https://huggingface.co/Tonioesparza/ourhood_training_dreambooth_lora_2_0/resolve/main/mask_in_C.png", | |
'depth_image':"https://huggingface.co/Tonioesparza/ourhood_training_dreambooth_lora_2_0/resolve/main/depth_C.png", | |
'canny_image':"https://huggingface.co/Tonioesparza/ourhood_training_dreambooth_lora_2_0/resolve/main/canny_C.png"}, | |
3:{'mask1':"https://huggingface.co/Tonioesparza/ourhood_training_dreambooth_lora_2_0/resolve/main/mask_in_B.png", | |
'depth_image':"https://huggingface.co/Tonioesparza/ourhood_training_dreambooth_lora_2_0/resolve/main/depth_B.png", | |
'canny_image':"https://huggingface.co/Tonioesparza/ourhood_training_dreambooth_lora_2_0/resolve/main/canny_B.png"}} | |
### mask init | |
output_height = 1024 | |
output_width = 1024 | |
mask1 = load_image(scaff_dic[scaffold]['mask1']) | |
masks = processor_mask.preprocess([mask1], height=output_height, width=output_width) | |
masks = [masks.reshape(1, masks.shape[0], masks.shape[2], masks.shape[3])] | |
###ip_images init | |
ip_img_1 = load_image("https://huggingface.co/Tonioesparza/ourhood_training_dreambooth_lora_2_0/resolve/main/25hours-hotel_25h_IndreBy_StephanLemke_Sauna1-1024x768.png") | |
ip_images = [[ip_img_1]] | |
pipe_CN.set_ip_adapter_scale([[0.7]]) | |
n_steps = num_inference_steps | |
###precomputed depth image | |
depth_image = load_image(scaff_dic[scaffold]['depth_image']) | |
canny_image = load_image(scaff_dic[scaffold]['canny_image']) | |
images_CN = [depth_image, canny_image] | |
### inference | |
results = pipe_CN( | |
prompt=prompt, | |
ip_adapter_image=ip_images, | |
negative_prompt="deformed, ugly, wrong proportion, low res, worst quality, low quality,text,watermark", | |
num_inference_steps=n_steps, | |
num_images_per_prompt=1, | |
denoising_end=fracc, | |
image=images_CN, | |
controlnet_conditioning_scale=[0.3, 0.45], | |
cross_attention_kwargs={"ip_adapter_masks": masks} | |
).images[0] | |
image = refiner( | |
prompt=prompt, | |
num_inference_steps=num_inference_steps, | |
denoising_start=fracc, | |
image=results, | |
).images[0] | |
return image | |
#@spaces.GPU #[uncomment to use ZeroGPU] | |
examples = [ | |
"A photograph, of an Ourhood privacy booth, front view, in a warehouse eventspace environment, in the style of event photography, silken oak frame, checkered warm grey exterior fabric, checkered warm grey interior fabric, curtains, diner seating, pillows", | |
"A photograph, of an Ourhood privacy booth, side view, in a warehouse eventspace environment, in the style of event photography, silken oak frame, taupe exterior fabric", | |
"A photograph, of an Ourhood privacy booth, close-up, in a HolmrisB8_HQ office environment, in the style of makeshift photoshoot, silken oak frame, taupe exterior fabric, taupe interior fabric, pillows", | |
"A rendering, of an Ourhood privacy booth, front view, in a Nordic atrium environment, in the style of Keyshot, silken oak frame, taupe exterior fabric, taupe interior fabric, diner seating"] | |
css=""" | |
#col-container { | |
margin: 0 auto; | |
max-width: 640px; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown(f""" | |
# HB8-Ourhood inference test | |
""") | |
with gr.Row(): | |
prompt = gr.Text( | |
label="Prompt", | |
show_label=False, | |
max_lines=1, | |
placeholder="Enter your prompt", | |
container=False, | |
) | |
run_button = gr.Button("Run", scale=0) | |
result = gr.Image(label="Result", show_label=False) | |
with gr.Accordion("Advanced Settings", open=False): | |
perspective = gr.Slider( | |
label="perspective", | |
minimum=1, | |
maximum=3, | |
step=1, | |
value=1, | |
) | |
seed = gr.Slider( | |
label="tracking number (seed)", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(): | |
fracc = gr.Slider( | |
label="refinement_scale", | |
minimum=0.8, | |
maximum=0.95, | |
step=0.01, | |
value=0.8, #Replace with defaults that work for your model | |
) | |
num_inference_steps = gr.Slider( | |
label="Number of inference steps", | |
minimum=35, | |
maximum=50, | |
step=1, | |
value=35, #Replace with defaults that work for your model | |
) | |
gr.Examples( | |
examples = examples, | |
inputs = [prompt] | |
) | |
gr.on( | |
triggers=[run_button.click, prompt.submit], | |
fn = ourhood_inference, | |
inputs = [prompt, num_inference_steps, perspective, fracc], | |
outputs = [result, seed] | |
) | |
demo.queue().launch() | |