TonicsOrca2 / app.py
Tonic's picture
Update app.py
27d5e20
raw
history blame
3.95 kB
import os
import math
import transformers
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
import gradio as gr
import sentencepiece
title = "Welcome to Tonic's 🐋🐳Orca-2-13B!"
description = "You can use [🐋🐳microsoft/Orca-2-13b](https://huggingface.co/microsoft/Orca-2-13b) via API using Gradio by scrolling down and clicking Use 'Via API' or privately by [cloning this space on huggingface](https://huggingface.co/spaces/Tonic1/TonicsOrca2?duplicate=true) . [Join my active builders' server on discord](https://discord.gg/VqTxc76K3u). Big thanks to the HuggingFace Organisation for the Community Grant."
# os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:50'
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model_name = "microsoft/Orca-2-13b"
# offload_folder = './model_weights'
# if not os.path.exists(offload_folder):
# os.makedirs(offload_folder)
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False)
model = AutoModelForCausalLM.from_pretrained(model_name)
model = model.to(torch.bfloat16)
model = model.to(device)
class OrcaChatBot:
def __init__(self, model, tokenizer, system_message="You are Orca, an AI language model created by Microsoft. You are a cautious assistant. You carefully follow instructions. You are helpful and harmless and you follow ethical guidelines and promote positive behavior."):
self.model = model
self.tokenizer = tokenizer
self.system_message = system_message
self.conversation_history = None
def predict(self, user_message, temperature=0.4, max_new_tokens=70, top_p=0.99, repetition_penalty=1.9):
# Prepare the prompt
prompt = f"<|im_start|>system\n{self.system_message}<|im_end|>\n<|im_start|>user\n{user_message}<|im_end|>\n<|im_start|>assistant" if self.conversation_history is None else self.conversation_history + f"<|im_end|>\n<|im_start|>user\n{user_message}<|im_end|>\n<|im_start|>assistant"
# Encode the prompt
inputs = self.tokenizer(prompt, return_tensors='pt', add_special_tokens=False)
input_ids = inputs["input_ids"].to(self.model.device)
# Generate a response
output_ids = self.model.generate(
input_ids,
max_length=input_ids.shape[1] + max_new_tokens,
temperature=temperature,
top_p=top_p,
repetition_penalty=repetition_penalty,
pad_token_id=self.tokenizer.eos_token_id,
do_sample=True # Enable sampling-based generation
)
# Decode the generated response
response = self.tokenizer.decode(output_ids[0], skip_special_tokens=True)
# Update conversation history
self.conversation_history = self.tokenizer.decode(output_ids[0], skip_special_tokens=False)
return response
Orca_bot = OrcaChatBot(model, tokenizer)
def gradio_predict(user_message, system_message, max_new_tokens, temperature, top_p, repetition_penalty):
full_message = f"{system_message}\n{user_message}" if system_message else user_message
return Orca_bot.predict(full_message, temperature, max_new_tokens, top_p, repetition_penalty)
iface = gr.Interface(
fn=gradio_predict,
title=title,
description=description,
inputs=[
gr.Textbox(label="Your Message", type="text", lines=3),
gr.Textbox(label="Introduce a Character Here or Set a Scene (system prompt)", type="text", lines=2),
gr.Slider(label="Max new tokens", value=1200, minimum=25, maximum=4096, step=1),
gr.Slider(label="Temperature", value=0.7, minimum=0.05, maximum=1.0, step=0.05),
gr.Slider(label="Top-p (nucleus sampling)", value=0.90, minimum=0.01, maximum=0.99, step=0.05),
gr.Slider(label="Repetition penalty", value=1.9, minimum=1.0, maximum=2.0, step=0.05)
],
outputs="text",
theme="ParityError/Anime"
)
# Launch the Gradio interface
iface.launch()