GOT-OCR / app.py
Tonic's picture
small-changes (#4)
02ff46f verified
raw
history blame
5.99 kB
import gradio as gr
import torch
from transformers import AutoModel, AutoTokenizer, AutoConfig
import os
import base64
import spaces
import io
from PIL import Image
import numpy as np
import yaml
import markdown
from pathlib import Path
# Function to extract title and description from the markdown file
def extract_title_description(md_file_path):
with open(md_file_path, 'r') as f:
lines = f.readlines()
# Extract frontmatter (YAML) for title
frontmatter = []
content_start = 0
if lines[0].strip() == '---':
for idx, line in enumerate(lines[1:], 1):
if line.strip() == '---':
content_start = idx + 1
break
frontmatter.append(line)
frontmatter_yaml = yaml.safe_load(''.join(frontmatter))
title = frontmatter_yaml.get('title', 'Title Not Found')
# Extract content (description)
description_md = ''.join(lines[content_start:])
description = markdown.markdown(description_md)
return title, description
# Path to the markdown file
md_file_path = 'content/index.md'
# Extract title and description from the markdown file
title, description = extract_title_description(md_file_path)
# Rest of the script continues as before
model_name = 'ucaslcl/GOT-OCR2_0'
tokenizer = AutoTokenizer.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True)
config = AutoConfig.from_pretrained(model_name, trust_remote_code=True)
model = AutoModel.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True, low_cpu_mem_usage=True, device_map='cuda', use_safetensors=True, pad_token_id=tokenizer.eos_token_id)
model = model.eval().cuda()
model.config.pad_token_id = tokenizer.eos_token_id
def image_to_base64(image):
buffered = io.BytesIO()
image.save(buffered, format="PNG")
return base64.b64encode(buffered.getvalue()).decode()
@spaces.GPU
def process_image(image, task, ocr_type=None, ocr_box=None, ocr_color=None, render=False):
if task == "Plain Text OCR":
res = model.chat(tokenizer, image, ocr_type='ocr')
elif task == "Format Text OCR":
res = model.chat(tokenizer, image, ocr_type='format')
elif task == "Fine-grained OCR (Box)":
res = model.chat(tokenizer, image, ocr_type=ocr_type, ocr_box=ocr_box)
elif task == "Fine-grained OCR (Color)":
res = model.chat(tokenizer, image, ocr_type=ocr_type, ocr_color=ocr_color)
elif task == "Multi-crop OCR":
res = model.chat_crop(tokenizer, image_file=image)
elif task == "Render Formatted OCR":
res = model.chat(tokenizer, image, ocr_type='format', render=True, save_render_file='./demo.html')
with open('./demo.html', 'r') as f:
html_content = f.read()
return res, html_content
return res, None
def update_inputs(task):
if task == "Plain Text OCR" or task == "Format Text OCR" or task == "Multi-crop OCR":
return [gr.update(visible=False)] * 4
elif task == "Fine-grained OCR (Box)":
return [
gr.update(visible=True, choices=["ocr", "format"]),
gr.update(visible=True),
gr.update(visible=False),
gr.update(visible=False)
]
elif task == "Fine-grained OCR (Color)":
return [
gr.update(visible=True, choices=["ocr", "format"]),
gr.update(visible=False),
gr.update(visible=True, choices=["red", "green", "blue"]),
gr.update(visible=False)
]
elif task == "Render Formatted OCR":
return [gr.update(visible=False)] * 3 + [gr.update(visible=True)]
def ocr_demo(image, task, ocr_type, ocr_box, ocr_color):
res, html_content = process_image(image, task, ocr_type, ocr_box, ocr_color)
if html_content:
return res, html_content
return res, None
import gradio as gr
with gr.Blocks() as demo:
with gr.Row():
# Left Column: Description
with gr.Column(scale=1):
gr.Markdown(f"# {title}")
gr.Markdown(description)
# Right Column: App Inputs and Outputs
with gr.Column(scale=3):
image_input = gr.Image(type="filepath", label="Input Image")
task_dropdown = gr.Dropdown(
choices=[
"Plain Text OCR",
"Format Text OCR",
"Fine-grained OCR (Box)",
"Fine-grained OCR (Color)",
"Multi-crop OCR",
"Render Formatted OCR"
],
label="Select Task",
value="Plain Text OCR"
)
ocr_type_dropdown = gr.Dropdown(
choices=["ocr", "format"],
label="OCR Type",
visible=False
)
ocr_box_input = gr.Textbox(
label="OCR Box (x1,y1,x2,y2)",
placeholder="e.g., 100,100,200,200",
visible=False
)
ocr_color_dropdown = gr.Dropdown(
choices=["red", "green", "blue"],
label="OCR Color",
visible=False
)
render_checkbox = gr.Checkbox(
label="Render Result",
visible=False
)
submit_button = gr.Button("Process")
# OCR Result below the Submit button
output_text = gr.Textbox(label="OCR Result")
output_html = gr.HTML(label="Rendered HTML Output")
# Update inputs dynamically based on task selection
task_dropdown.change(
update_inputs,
inputs=[task_dropdown],
outputs=[ocr_type_dropdown, ocr_box_input, ocr_color_dropdown, render_checkbox]
)
# Process OCR on button click
submit_button.click(
ocr_demo,
inputs=[image_input, task_dropdown, ocr_type_dropdown, ocr_box_input, ocr_color_dropdown],
outputs=[output_text, output_html]
)
if __name__ == "__main__":
demo.launch()