Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,839 Bytes
cef4f97 22c7b5b cef4f97 d1d0907 1a87a19 02ff46f 4967985 7dcbad8 4326b14 9cf89ef 4326b14 02ff46f ed456c1 22c7b5b cef4f97 02ff46f cef4f97 00ee90b cef4f97 4326b14 ee4b3d0 fa528ee 4326b14 ee4b3d0 4326b14 997a61b 7dcbad8 4326b14 7dcbad8 4326b14 fa528ee 9cf89ef 464330e fa528ee 9cf89ef fa528ee 4326b14 7dcbad8 4326b14 9cf89ef fa528ee cef4f97 ee4b3d0 11f2cf1 cef4f97 11f2cf1 cef4f97 11f2cf1 cef4f97 f35ea73 71a766f 405302e ee4b3d0 997a61b 4326b14 fa528ee 7dcbad8 ee4b3d0 02ff46f 4326b14 02ff46f 7dcbad8 4326b14 cef4f97 2cd1f0b 4c630fe ff7a2a0 448bc9b ff7a2a0 4967985 de261b5 448bc9b dfc79d4 3405c5a dfc79d4 3405c5a 4c630fe fa528ee 4c630fe fa528ee ee4b3d0 4c630fe 02ff46f cef4f97 fa528ee cef4f97 ee4b3d0 cef4f97 fa528ee f34dca6 7dcbad8 ee4b3d0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
import gradio as gr
import torch
from transformers import AutoModel, AutoTokenizer, AutoConfig
import os
import base64
import spaces
import io
from PIL import Image
import numpy as np
import yaml
from pathlib import Path
from globe import title, description, modelinfor, joinus, howto
import uuid
import tempfile
import time
import shutil
import cv2
model_name = 'ucaslcl/GOT-OCR2_0'
tokenizer = AutoTokenizer.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True)
config = AutoConfig.from_pretrained(model_name, trust_remote_code=True)
model = AutoModel.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True, low_cpu_mem_usage=True, device_map='cuda', use_safetensors=True, pad_token_id=tokenizer.eos_token_id)
model = model.eval().cuda()
model.config.pad_token_id = tokenizer.eos_token_id
UPLOAD_FOLDER = "./uploads"
RESULTS_FOLDER = "./results"
for folder in [UPLOAD_FOLDER, RESULTS_FOLDER]:
if not os.path.exists(folder):
os.makedirs(folder)
def image_to_base64(image):
buffered = io.BytesIO()
image.save(buffered, format="PNG")
return base64.b64encode(buffered.getvalue()).decode()
@spaces.GPU()
def process_image(image, task, ocr_type=None, ocr_box=None, ocr_color=None):
if image is None:
return "Error: No image provided", None, None
unique_id = str(uuid.uuid4())
image_path = os.path.join(UPLOAD_FOLDER, f"{unique_id}.png")
result_path = os.path.join(RESULTS_FOLDER, f"{unique_id}.html")
try:
if isinstance(image, dict): # If image is from ImageEditor
composite_image = image.get("composite")
if composite_image is not None:
if isinstance(composite_image, np.ndarray):
cv2.imwrite(image_path, cv2.cvtColor(composite_image, cv2.COLOR_RGB2BGR))
elif isinstance(composite_image, Image.Image):
composite_image.save(image_path)
else:
return "Error: Unsupported image format from ImageEditor", None, None
else:
return "Error: No composite image found in ImageEditor output", None, None
elif isinstance(image, np.ndarray):
cv2.imwrite(image_path, cv2.cvtColor(image, cv2.COLOR_RGB2BGR))
elif isinstance(image, str):
shutil.copy(image, image_path)
else:
return "Error: Unsupported image format", None, None
if task == "Plain Text OCR":
res = model.chat(tokenizer, image_path, ocr_type='ocr')
return res, None, unique_id
else:
if task == "Format Text OCR":
res = model.chat(tokenizer, image_path, ocr_type='format', render=True, save_render_file=result_path)
elif task == "Fine-grained OCR (Box)":
res = model.chat(tokenizer, image_path, ocr_type=ocr_type, ocr_box=ocr_box, render=True, save_render_file=result_path)
elif task == "Fine-grained OCR (Color)":
res = model.chat(tokenizer, image_path, ocr_type=ocr_type, ocr_color=ocr_color, render=True, save_render_file=result_path)
elif task == "Multi-crop OCR":
res = model.chat_crop(tokenizer, image_path, ocr_type='format', render=True, save_render_file=result_path)
elif task == "Render Formatted OCR":
res = model.chat(tokenizer, image_path, ocr_type='format', render=True, save_render_file=result_path)
if os.path.exists(result_path):
with open(result_path, 'r') as f:
html_content = f.read()
return res, html_content, unique_id
else:
return res, None, unique_id
except Exception as e:
return f"Error: {str(e)}", None, None
finally:
if os.path.exists(image_path):
os.remove(image_path)
def update_image_input(task):
if task == "Fine-grained OCR (Color)":
return gr.update(visible=False), gr.update(visible=True), gr.update(visible=True)
else:
return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False)
def update_inputs(task):
if task in ["Plain Text OCR", "Format Text OCR", "Multi-crop OCR", "Render Formatted OCR"]:
return [
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=True),
gr.update(visible=False),
gr.update(visible=True),
gr.update(visible=False)
]
elif task == "Fine-grained OCR (Box)":
return [
gr.update(visible=True, choices=["ocr", "format"]),
gr.update(visible=True),
gr.update(visible=False),
gr.update(visible=True),
gr.update(visible=False),
gr.update(visible=True),
gr.update(visible=False)
]
elif task == "Fine-grained OCR (Color)":
return [
gr.update(visible=True, choices=["ocr", "format"]),
gr.update(visible=False),
gr.update(visible=True, choices=["red", "green", "blue"]),
gr.update(visible=False),
gr.update(visible=True),
gr.update(visible=False),
gr.update(visible=True)
]
def ocr_demo(image, task, ocr_type, ocr_box, ocr_color):
res, html_content, unique_id = process_image(image, task, ocr_type, ocr_box, ocr_color)
if isinstance(res, str) and res.startswith("Error:"):
return res, None
res = res.replace("\\title", "\\title ")
res = f"$$ {res} $$"
if html_content:
encoded_html = base64.b64encode(html_content.encode('utf-8')).decode('utf-8')
iframe_src = f"data:text/html;base64,{encoded_html}"
iframe = f'<iframe src="{iframe_src}" width="100%" height="600px"></iframe>'
download_link = f'<a href="data:text/html;base64,{encoded_html}" download="result_{unique_id}.html">Download Full Result</a>'
return res, f"{download_link}<br>{iframe}"
return res, None
def cleanup_old_files():
current_time = time.time()
for folder in [UPLOAD_FOLDER, RESULTS_FOLDER]:
for file_path in Path(folder).glob('*'):
if current_time - file_path.stat().st_mtime > 3600: # 1 hour
file_path.unlink()
with gr.Blocks(theme=gr.themes.Base()) as demo:
with gr.Row():
gr.Markdown(title)
with gr.Row():
with gr.Column(scale=1):
with gr.Group():
gr.Markdown(description)
with gr.Column(scale=1):
with gr.Group():
gr.Markdown(modelinfor)
gr.Markdown(joinus)
with gr.Row():
with gr.Accordion("How to use Fine-grained OCR (Color)", open=False):
with gr.Row():
gr.Image("res/image/howto_1.png", label="Select the Following Parameters")
gr.Image("res/image/howto_2.png", label="Click on Paintbrush in the Image Editor")
gr.Image("res/image/howto_3.png", label="Select your Brush Color (Red)")
gr.Image("res/image/howto_4.png", label="Make a Box Around The Text")
with gr.Row():
with gr.Group():
gr.Markdown(howto)
with gr.Row():
with gr.Column(scale=1):
with gr.Group():
image_input = gr.Image(type="filepath", label="Input Image")
image_editor = gr.ImageEditor(label="Image Editor", type="pil", visible=False)
task_dropdown = gr.Dropdown(
choices=[
"Plain Text OCR",
"Format Text OCR",
"Fine-grained OCR (Box)",
"Fine-grained OCR (Color)",
"Multi-crop OCR",
"Render Formatted OCR"
],
label="Select Task",
value="Plain Text OCR"
)
ocr_type_dropdown = gr.Dropdown(
choices=["ocr", "format"],
label="OCR Type",
visible=False
)
ocr_box_input = gr.Textbox(
label="OCR Box (x1,y1,x2,y2)",
placeholder="[100,100,200,200]",
visible=False
)
ocr_color_dropdown = gr.Dropdown(
choices=["red", "green", "blue"],
label="OCR Color",
visible=False
)
submit_button = gr.Button("Process")
editor_submit_button = gr.Button("Process Edited Image", visible=False)
with gr.Column(scale=1):
with gr.Group():
output_markdown = gr.Markdown(label="🫴🏻📸GOT-OCR")
output_html = gr.HTML(label="🫴🏻📸GOT-OCR")
task_dropdown.change(
update_inputs,
inputs=[task_dropdown],
outputs=[ocr_type_dropdown, ocr_box_input, ocr_color_dropdown, image_input, image_editor, submit_button, editor_submit_button]
)
task_dropdown.change(
update_image_input,
inputs=[task_dropdown],
outputs=[image_input, image_editor, editor_submit_button]
)
submit_button.click(
ocr_demo,
inputs=[image_input, task_dropdown, ocr_type_dropdown, ocr_box_input, ocr_color_dropdown],
outputs=[output_markdown, output_html]
)
editor_submit_button.click(
ocr_demo,
inputs=[image_editor, task_dropdown, ocr_type_dropdown, ocr_box_input, ocr_color_dropdown],
outputs=[output_markdown, output_html]
)
if __name__ == "__main__":
cleanup_old_files()
demo.launch() |