Spaces:
Paused
Paused
from peft import PeftModel, PeftConfig | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import torch | |
from transformers import AutoTokenizer | |
from peft import PeftModel, PeftConfig | |
config = PeftConfig.from_pretrained("TohidA/LlamaInstructMona") | |
model = AutoModelForCausalLM.from_pretrained("mlabonne/llama-2-7b-miniguanaco") | |
model = PeftModel.from_pretrained(model, "TohidA/LlamaInstructMona") | |
if torch.cuda.is_available(): | |
model = model.cuda() | |
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path) | |
def prompt(instruction, input=''): | |
if input=='': | |
return f"Below is an instruction that describes a task. Write a response that appropriately completes the request. \n\n### Instruction:\n{instruction} \n\n### Response:\n" | |
return f"Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. \n\n### Instruction:\n{instruction}\n\n### Input:\n{input}\n\n### Response:\n" | |
tokenizer.pad_token = tokenizer.eos_token | |
tokenizer.pad_token_id = tokenizer.eos_token_id | |
def instruct(instruction, input='', temperature=0.7, top_p=0.95, top_k=4, max_new_tokens=128, do_sample=False, penalty_alpha=0.6, repetition_penalty=1., stop="\n\n"): | |
input_ids = tokenizer(prompt(instruction, input).strip(), return_tensors='pt').input_ids.cuda() | |
with torch.cuda.amp.autocast(): | |
outputs = model.generate( | |
input_ids=input_ids, | |
return_dict_in_generate=True, | |
output_scores=True, | |
max_new_tokens=max_new_tokens, | |
temperature=temperature, | |
top_p=top_p, | |
top_k=top_k, | |
do_sample=do_sample, | |
repetition_penalty=repetition_penalty | |
) | |
if stop=="": | |
return tokenizer.decode(outputs.sequences[0], skip_special_tokens=True).split("### Response:")[1].strip(), prompt(instruction, input) | |
return tokenizer.decode(outputs.sequences[0], skip_special_tokens=True).split("### Response:")[1].strip().split(stop)[0].strip(), prompt(instruction, input) | |
import locale | |
locale.getpreferredencoding = lambda: "UTF-8" | |
import gradio as gr | |
input_text = gr.Textbox(label="Input") | |
instruction_text = gr.Textbox(label="Instruction") | |
temperature = gr.Slider(label="Temperature", minimum=0, maximum=1, value=0.7, step=0.05) | |
top_p = gr.Slider(label="Top-P", minimum=0, maximum=1, value=0.95, step=0.01) | |
top_k = gr.Slider(label="Top-K", minimum=0, maximum=128, value=40, step=1) | |
max_new_tokens = gr.Slider(label="Tokens", minimum=1, maximum=256, value=64) | |
do_sample = gr.Checkbox(label="Do Sample", value=True) | |
penalty_alpha = gr.Slider(minimum=0, maximum=1, value=0.5) | |
repetition_penalty = gr.Slider(minimum=1., maximum=2., value=1., step=0.1) | |
stop = gr.Textbox(label="Stopping Criteria", value="") | |
output_prompt = gr.Textbox(label="Prompt") | |
output_text = gr.Textbox(label="Output") | |
description = """ | |
The [TohidA/InstructLlamaMONA-withMONAdataset](https://hf.co/TohidA/LlamaInstructMona). A Llama chat 7B model finetuned on an [instruction dataset](https://huggingface.co/mlabonne/llama-2-7b-miniguanaco), then finetuned with the RL/PPO using a [Reward model](https://huggingface.co/TohidA/MONAreward) which is a BERT classifier trained on [Monda dataset](https://huggingface.co/datasets/TohidA/MONA), with [low rank adaptation](https://arxiv.org/abs/2106.09685) for a single epoch. | |
""" | |
gr.Interface(fn=instruct, | |
inputs=[instruction_text, input_text, temperature, top_p, top_k, max_new_tokens, do_sample, penalty_alpha, repetition_penalty, stop], | |
outputs=[output_text, output_prompt], | |
title="InstructLlamaMONA 7B Gradio Demo", description=description).launch( | |
debug=True, | |
share=True | |
) | |