PuLID-dream8 / pulid /encoders.py
邬彦泽
add app
9eb3654
import torch
import torch.nn as nn
class IDEncoder(nn.Module):
def __init__(self, width=1280, context_dim=2048, num_token=5):
super().__init__()
self.num_token = num_token
self.context_dim = context_dim
h1 = min((context_dim * num_token) // 4, 1024)
h2 = min((context_dim * num_token) // 2, 1024)
self.body = nn.Sequential(
nn.Linear(width, h1),
nn.LayerNorm(h1),
nn.LeakyReLU(),
nn.Linear(h1, h2),
nn.LayerNorm(h2),
nn.LeakyReLU(),
nn.Linear(h2, context_dim * num_token),
)
for i in range(5):
setattr(
self,
f'mapping_{i}',
nn.Sequential(
nn.Linear(1024, 1024),
nn.LayerNorm(1024),
nn.LeakyReLU(),
nn.Linear(1024, 1024),
nn.LayerNorm(1024),
nn.LeakyReLU(),
nn.Linear(1024, context_dim),
),
)
setattr(
self,
f'mapping_patch_{i}',
nn.Sequential(
nn.Linear(1024, 1024),
nn.LayerNorm(1024),
nn.LeakyReLU(),
nn.Linear(1024, 1024),
nn.LayerNorm(1024),
nn.LeakyReLU(),
nn.Linear(1024, context_dim),
),
)
def forward(self, x, y):
# x shape [N, C]
x = self.body(x)
x = x.reshape(-1, self.num_token, self.context_dim)
hidden_states = ()
for i, emb in enumerate(y):
hidden_state = getattr(self, f'mapping_{i}')(emb[:, :1]) + getattr(self, f'mapping_patch_{i}')(
emb[:, 1:]
).mean(dim=1, keepdim=True)
hidden_states += (hidden_state,)
hidden_states = torch.cat(hidden_states, dim=1)
return torch.cat([x, hidden_states], dim=1)