Spaces:
Runtime error
Runtime error
Update secrets
Browse files- pyscript/transcriptor.py +162 -162
pyscript/transcriptor.py
CHANGED
@@ -1,163 +1,163 @@
|
|
1 |
-
import os
|
2 |
-
from dotenv import load_dotenv
|
3 |
-
import whisper
|
4 |
-
from pyannote.audio import Pipeline
|
5 |
-
import torch
|
6 |
-
from tqdm import tqdm
|
7 |
-
from time import time
|
8 |
-
from transformers import pipeline
|
9 |
-
from .transcription import Transcription
|
10 |
-
from .audio_processing import AudioProcessor
|
11 |
-
|
12 |
-
load_dotenv()
|
13 |
-
|
14 |
-
class Transcriptor:
|
15 |
-
"""
|
16 |
-
A class for transcribing and diarizing audio files.
|
17 |
-
|
18 |
-
This class uses the Whisper model for transcription and the PyAnnote speaker diarization pipeline for speaker identification.
|
19 |
-
|
20 |
-
Attributes
|
21 |
-
----------
|
22 |
-
model_size : str
|
23 |
-
The size of the Whisper model to use for transcription. Available options are:
|
24 |
-
- 'tiny': Fastest, lowest accuracy
|
25 |
-
- 'base': Fast, good accuracy for many use cases
|
26 |
-
- 'small': Balanced speed and accuracy
|
27 |
-
- 'medium': High accuracy, slower than smaller models
|
28 |
-
- 'large': High accuracy, slower and more resource-intensive
|
29 |
-
- 'large-v1': Improved version of the large model
|
30 |
-
- 'large-v2': Further improved version of the large model
|
31 |
-
- 'large-v3': Latest and most accurate version of the large model
|
32 |
-
- 'large-v3-turbo': Optimized version of the large-v3 model for faster processing
|
33 |
-
model : whisper.model.Whisper
|
34 |
-
The Whisper model for transcription.
|
35 |
-
pipeline : pyannote.audio.pipelines.SpeakerDiarization
|
36 |
-
The PyAnnote speaker diarization pipeline.
|
37 |
-
|
38 |
-
Usage:
|
39 |
-
>>> transcript = Transcriptor(model_size="large-v3")
|
40 |
-
>>> transcription = transcript.transcribe_audio("/path/to/audio.wav")
|
41 |
-
>>> transcription.get_name_speakers()
|
42 |
-
>>> transcription.save("/path/to/transcripts")
|
43 |
-
|
44 |
-
Note:
|
45 |
-
Larger models, especially 'large-v3', provide higher accuracy but require more
|
46 |
-
computational resources and may be slower to process audio.
|
47 |
-
"""
|
48 |
-
|
49 |
-
def __init__(self, model_size: str = "base"):
|
50 |
-
self.model_size = model_size
|
51 |
-
self.HF_TOKEN = os.
|
52 |
-
if not self.HF_TOKEN:
|
53 |
-
raise ValueError("HF_TOKEN not found. Please
|
54 |
-
self._setup()
|
55 |
-
|
56 |
-
def _setup(self):
|
57 |
-
"""Initialize the Whisper model and diarization pipeline."""
|
58 |
-
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
59 |
-
print("Initializing Whisper model...")
|
60 |
-
if self.model_size == "large-v3-turbo":
|
61 |
-
self.model = pipeline(
|
62 |
-
task="automatic-speech-recognition",
|
63 |
-
model="ylacombe/whisper-large-v3-turbo",
|
64 |
-
chunk_length_s=30,
|
65 |
-
device=self.device,
|
66 |
-
)
|
67 |
-
else:
|
68 |
-
self.model = whisper.load_model(self.model_size, device=self.device)
|
69 |
-
print("Building diarization pipeline...")
|
70 |
-
self.pipeline = Pipeline.from_pretrained(
|
71 |
-
"pyannote/speaker-diarization-3.1",
|
72 |
-
use_auth_token=self.HF_TOKEN
|
73 |
-
).to(torch.device(self.device))
|
74 |
-
print("Setup completed successfully!")
|
75 |
-
|
76 |
-
def transcribe_audio(self, audio_file_path: str, enhanced: bool = False) -> Transcription:
|
77 |
-
"""
|
78 |
-
Transcribe an audio file.
|
79 |
-
|
80 |
-
Parameters:
|
81 |
-
-----------
|
82 |
-
audio_file_path : str
|
83 |
-
Path to the audio file to be transcribed.
|
84 |
-
enhanced : bool, optional
|
85 |
-
If True, applies audio enhancement techniques to improve transcription quality.
|
86 |
-
This includes noise reduction, voice enhancement, and volume boosting.
|
87 |
-
|
88 |
-
Returns:
|
89 |
-
--------
|
90 |
-
Transcription
|
91 |
-
A Transcription object containing the transcribed text and speaker segments.
|
92 |
-
"""
|
93 |
-
try:
|
94 |
-
print("Processing audio file...")
|
95 |
-
processed_audio = self.process_audio(audio_file_path, enhanced)
|
96 |
-
audio_file_path = processed_audio.path
|
97 |
-
audio, sr, duration = processed_audio.load_as_array(), processed_audio.sample_rate, processed_audio.duration
|
98 |
-
|
99 |
-
print("Diarization in progress...")
|
100 |
-
start_time = time()
|
101 |
-
diarization = self.perform_diarization(audio_file_path)
|
102 |
-
print(f"Diarization completed in {time() - start_time:.2f} seconds.")
|
103 |
-
segments = list(diarization.itertracks(yield_label=True))
|
104 |
-
|
105 |
-
transcriptions = self.transcribe_segments(audio, sr, duration, segments)
|
106 |
-
return Transcription(audio_file_path, transcriptions, segments)
|
107 |
-
except Exception as e:
|
108 |
-
raise RuntimeError(f"Failed to process the audio file: {e}")
|
109 |
-
|
110 |
-
def process_audio(self, audio_file_path: str, enhanced: bool = False) -> AudioProcessor:
|
111 |
-
"""
|
112 |
-
Process the audio file to ensure it meets the requirements for transcription.
|
113 |
-
|
114 |
-
Parameters:
|
115 |
-
-----------
|
116 |
-
audio_file_path : str
|
117 |
-
Path to the audio file to be processed.
|
118 |
-
enhanced : bool, optional
|
119 |
-
If True, applies audio enhancement techniques to improve audio quality.
|
120 |
-
This includes optimizing noise reduction, voice enhancement, and volume boosting
|
121 |
-
parameters based on the audio characteristics.
|
122 |
-
|
123 |
-
Returns:
|
124 |
-
--------
|
125 |
-
AudioProcessor
|
126 |
-
An AudioProcessor object containing the processed audio file.
|
127 |
-
"""
|
128 |
-
processed_audio = AudioProcessor(audio_file_path)
|
129 |
-
if processed_audio.format != ".wav":
|
130 |
-
processed_audio.convert_to_wav()
|
131 |
-
|
132 |
-
if processed_audio.sample_rate != 16000:
|
133 |
-
processed_audio.resample_wav()
|
134 |
-
|
135 |
-
if enhanced:
|
136 |
-
parameters = processed_audio.optimize_enhancement_parameters()
|
137 |
-
processed_audio.enhance_audio(noise_reduce_strength=parameters[0],
|
138 |
-
voice_enhance_strength=parameters[1],
|
139 |
-
volume_boost=parameters[2])
|
140 |
-
|
141 |
-
processed_audio.display_changes()
|
142 |
-
return processed_audio
|
143 |
-
|
144 |
-
def perform_diarization(self, audio_file_path: str):
|
145 |
-
"""Perform speaker diarization on the audio file."""
|
146 |
-
with torch.no_grad():
|
147 |
-
return self.pipeline(audio_file_path)
|
148 |
-
|
149 |
-
def transcribe_segments(self, audio, sr, duration, segments):
|
150 |
-
"""Transcribe audio segments based on diarization."""
|
151 |
-
transcriptions = []
|
152 |
-
|
153 |
-
for turn, _, speaker in tqdm(segments, desc="Transcribing segments", unit="segment", ncols=100, colour="green"):
|
154 |
-
start = turn.start
|
155 |
-
end = min(turn.end, duration)
|
156 |
-
segment = audio[int(start * sr):int(end * sr)]
|
157 |
-
if self.model_size == "large-v3-turbo":
|
158 |
-
result = self.model(segment)
|
159 |
-
else:
|
160 |
-
result = self.model.transcribe(segment, fp16=self.device == "cuda")
|
161 |
-
transcriptions.append((speaker, result['text'].strip()))
|
162 |
-
|
163 |
return transcriptions
|
|
|
1 |
+
import os
|
2 |
+
from dotenv import load_dotenv
|
3 |
+
import whisper
|
4 |
+
from pyannote.audio import Pipeline
|
5 |
+
import torch
|
6 |
+
from tqdm import tqdm
|
7 |
+
from time import time
|
8 |
+
from transformers import pipeline
|
9 |
+
from .transcription import Transcription
|
10 |
+
from .audio_processing import AudioProcessor
|
11 |
+
|
12 |
+
load_dotenv()
|
13 |
+
|
14 |
+
class Transcriptor:
|
15 |
+
"""
|
16 |
+
A class for transcribing and diarizing audio files.
|
17 |
+
|
18 |
+
This class uses the Whisper model for transcription and the PyAnnote speaker diarization pipeline for speaker identification.
|
19 |
+
|
20 |
+
Attributes
|
21 |
+
----------
|
22 |
+
model_size : str
|
23 |
+
The size of the Whisper model to use for transcription. Available options are:
|
24 |
+
- 'tiny': Fastest, lowest accuracy
|
25 |
+
- 'base': Fast, good accuracy for many use cases
|
26 |
+
- 'small': Balanced speed and accuracy
|
27 |
+
- 'medium': High accuracy, slower than smaller models
|
28 |
+
- 'large': High accuracy, slower and more resource-intensive
|
29 |
+
- 'large-v1': Improved version of the large model
|
30 |
+
- 'large-v2': Further improved version of the large model
|
31 |
+
- 'large-v3': Latest and most accurate version of the large model
|
32 |
+
- 'large-v3-turbo': Optimized version of the large-v3 model for faster processing
|
33 |
+
model : whisper.model.Whisper
|
34 |
+
The Whisper model for transcription.
|
35 |
+
pipeline : pyannote.audio.pipelines.SpeakerDiarization
|
36 |
+
The PyAnnote speaker diarization pipeline.
|
37 |
+
|
38 |
+
Usage:
|
39 |
+
>>> transcript = Transcriptor(model_size="large-v3")
|
40 |
+
>>> transcription = transcript.transcribe_audio("/path/to/audio.wav")
|
41 |
+
>>> transcription.get_name_speakers()
|
42 |
+
>>> transcription.save("/path/to/transcripts")
|
43 |
+
|
44 |
+
Note:
|
45 |
+
Larger models, especially 'large-v3', provide higher accuracy but require more
|
46 |
+
computational resources and may be slower to process audio.
|
47 |
+
"""
|
48 |
+
|
49 |
+
def __init__(self, model_size: str = "base"):
|
50 |
+
self.model_size = model_size
|
51 |
+
self.HF_TOKEN = os.environ.get("HF_TOKEN")
|
52 |
+
if not self.HF_TOKEN:
|
53 |
+
raise ValueError("HF_TOKEN not found. Please set it as a Gradio secret.")
|
54 |
+
self._setup()
|
55 |
+
|
56 |
+
def _setup(self):
|
57 |
+
"""Initialize the Whisper model and diarization pipeline."""
|
58 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
59 |
+
print("Initializing Whisper model...")
|
60 |
+
if self.model_size == "large-v3-turbo":
|
61 |
+
self.model = pipeline(
|
62 |
+
task="automatic-speech-recognition",
|
63 |
+
model="ylacombe/whisper-large-v3-turbo",
|
64 |
+
chunk_length_s=30,
|
65 |
+
device=self.device,
|
66 |
+
)
|
67 |
+
else:
|
68 |
+
self.model = whisper.load_model(self.model_size, device=self.device)
|
69 |
+
print("Building diarization pipeline...")
|
70 |
+
self.pipeline = Pipeline.from_pretrained(
|
71 |
+
"pyannote/speaker-diarization-3.1",
|
72 |
+
use_auth_token=self.HF_TOKEN
|
73 |
+
).to(torch.device(self.device))
|
74 |
+
print("Setup completed successfully!")
|
75 |
+
|
76 |
+
def transcribe_audio(self, audio_file_path: str, enhanced: bool = False) -> Transcription:
|
77 |
+
"""
|
78 |
+
Transcribe an audio file.
|
79 |
+
|
80 |
+
Parameters:
|
81 |
+
-----------
|
82 |
+
audio_file_path : str
|
83 |
+
Path to the audio file to be transcribed.
|
84 |
+
enhanced : bool, optional
|
85 |
+
If True, applies audio enhancement techniques to improve transcription quality.
|
86 |
+
This includes noise reduction, voice enhancement, and volume boosting.
|
87 |
+
|
88 |
+
Returns:
|
89 |
+
--------
|
90 |
+
Transcription
|
91 |
+
A Transcription object containing the transcribed text and speaker segments.
|
92 |
+
"""
|
93 |
+
try:
|
94 |
+
print("Processing audio file...")
|
95 |
+
processed_audio = self.process_audio(audio_file_path, enhanced)
|
96 |
+
audio_file_path = processed_audio.path
|
97 |
+
audio, sr, duration = processed_audio.load_as_array(), processed_audio.sample_rate, processed_audio.duration
|
98 |
+
|
99 |
+
print("Diarization in progress...")
|
100 |
+
start_time = time()
|
101 |
+
diarization = self.perform_diarization(audio_file_path)
|
102 |
+
print(f"Diarization completed in {time() - start_time:.2f} seconds.")
|
103 |
+
segments = list(diarization.itertracks(yield_label=True))
|
104 |
+
|
105 |
+
transcriptions = self.transcribe_segments(audio, sr, duration, segments)
|
106 |
+
return Transcription(audio_file_path, transcriptions, segments)
|
107 |
+
except Exception as e:
|
108 |
+
raise RuntimeError(f"Failed to process the audio file: {e}")
|
109 |
+
|
110 |
+
def process_audio(self, audio_file_path: str, enhanced: bool = False) -> AudioProcessor:
|
111 |
+
"""
|
112 |
+
Process the audio file to ensure it meets the requirements for transcription.
|
113 |
+
|
114 |
+
Parameters:
|
115 |
+
-----------
|
116 |
+
audio_file_path : str
|
117 |
+
Path to the audio file to be processed.
|
118 |
+
enhanced : bool, optional
|
119 |
+
If True, applies audio enhancement techniques to improve audio quality.
|
120 |
+
This includes optimizing noise reduction, voice enhancement, and volume boosting
|
121 |
+
parameters based on the audio characteristics.
|
122 |
+
|
123 |
+
Returns:
|
124 |
+
--------
|
125 |
+
AudioProcessor
|
126 |
+
An AudioProcessor object containing the processed audio file.
|
127 |
+
"""
|
128 |
+
processed_audio = AudioProcessor(audio_file_path)
|
129 |
+
if processed_audio.format != ".wav":
|
130 |
+
processed_audio.convert_to_wav()
|
131 |
+
|
132 |
+
if processed_audio.sample_rate != 16000:
|
133 |
+
processed_audio.resample_wav()
|
134 |
+
|
135 |
+
if enhanced:
|
136 |
+
parameters = processed_audio.optimize_enhancement_parameters()
|
137 |
+
processed_audio.enhance_audio(noise_reduce_strength=parameters[0],
|
138 |
+
voice_enhance_strength=parameters[1],
|
139 |
+
volume_boost=parameters[2])
|
140 |
+
|
141 |
+
processed_audio.display_changes()
|
142 |
+
return processed_audio
|
143 |
+
|
144 |
+
def perform_diarization(self, audio_file_path: str):
|
145 |
+
"""Perform speaker diarization on the audio file."""
|
146 |
+
with torch.no_grad():
|
147 |
+
return self.pipeline(audio_file_path)
|
148 |
+
|
149 |
+
def transcribe_segments(self, audio, sr, duration, segments):
|
150 |
+
"""Transcribe audio segments based on diarization."""
|
151 |
+
transcriptions = []
|
152 |
+
|
153 |
+
for turn, _, speaker in tqdm(segments, desc="Transcribing segments", unit="segment", ncols=100, colour="green"):
|
154 |
+
start = turn.start
|
155 |
+
end = min(turn.end, duration)
|
156 |
+
segment = audio[int(start * sr):int(end * sr)]
|
157 |
+
if self.model_size == "large-v3-turbo":
|
158 |
+
result = self.model(segment)
|
159 |
+
else:
|
160 |
+
result = self.model.transcribe(segment, fp16=self.device == "cuda")
|
161 |
+
transcriptions.append((speaker, result['text'].strip()))
|
162 |
+
|
163 |
return transcriptions
|