Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import re
|
3 |
+
from transformers import MBartForConditionalGeneration, MBart50TokenizerFast, pipeline
|
4 |
+
|
5 |
+
model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-50-one-to-many-mmt")
|
6 |
+
tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50-one-to-many-mmt", src_lang="en_XX")
|
7 |
+
pipe2 = pipeline('summarization', model="Tiju1996/conversation-summ")
|
8 |
+
|
9 |
+
|
10 |
+
|
11 |
+
def process_text(text):
|
12 |
+
# Remove all reference citations
|
13 |
+
text = re.sub(r'\[[0-9]*\]', '', text)
|
14 |
+
|
15 |
+
# Remove all footnotes
|
16 |
+
text = re.sub(r'\[\d*\]', '', text)
|
17 |
+
|
18 |
+
# Remove all images
|
19 |
+
text = re.sub(r'(\[[^\]]*\])?\[[^\]]*\]', '', text)
|
20 |
+
|
21 |
+
# Remove all non-string characters
|
22 |
+
text = re.sub(r'[^\x00-\x7F]+', '', text)
|
23 |
+
|
24 |
+
# Remove all emojis
|
25 |
+
emoji_pattern = re.compile("["
|
26 |
+
u"\U0001F600-\U0001F64F" # emoticons
|
27 |
+
u"\U0001F300-\U0001F5FF" # symbols & pictographs
|
28 |
+
u"\U0001F680-\U0001F6FF" # transport & map symbols
|
29 |
+
u"\U0001F1E0-\U0001F1FF" # flags (iOS)
|
30 |
+
u"\U00002702-\U000027B0"
|
31 |
+
u"\U000024C2-\U0001F251"
|
32 |
+
"]+", flags=re.UNICODE)
|
33 |
+
text = emoji_pattern.sub(r'', text)
|
34 |
+
|
35 |
+
# Remove all HTML tags
|
36 |
+
text = re.sub(r'<.*?>', '', text)
|
37 |
+
|
38 |
+
#Remove all hyperlinks from the text
|
39 |
+
text=re.sub(r'\[([^\]]+)\]\(([^)]+)\)', r'\1', text)
|
40 |
+
|
41 |
+
#Remove all url from the text
|
42 |
+
text=re.sub(r'http\S+', '', text)
|
43 |
+
|
44 |
+
# Strip whitespace
|
45 |
+
text = text.strip(" ")
|
46 |
+
|
47 |
+
return text
|
48 |
+
|
49 |
+
|
50 |
+
def summarize(article_en_raw):
|
51 |
+
article_en=process_text(article_en_raw)
|
52 |
+
summary_en=pipe2(article_en)
|
53 |
+
model_inputs = tokenizer(summary_en[0]['summary_text'], return_tensors="pt")
|
54 |
+
generated_tokens = model.generate(
|
55 |
+
**model_inputs,
|
56 |
+
forced_bos_token_id=tokenizer.lang_code_to_id["hi_IN"]
|
57 |
+
)
|
58 |
+
translation = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
|
59 |
+
return translation[0]
|
60 |
+
|
61 |
+
input_text = gr.inputs.Textbox(lines=20, label="Enter text document to be summarized")
|
62 |
+
output_text = gr.outputs.Textbox(label="Summarized Text")
|
63 |
+
|
64 |
+
gr.Interface(fn=summarize, inputs=input_text, outputs=output_text, title="Text Summarization App",
|
65 |
+
description="Enter a text document and get its summarized version.").launch("English-Hindi-Summary",share=True)
|