Spaces:
Runtime error
Runtime error
import gradio as gr | |
from Models import VisionModel | |
import huggingface_hub | |
from PIL import Image | |
import torch.amp.autocast_mode | |
from pathlib import Path | |
MODEL_REPO = "fancyfeast/joytag" | |
def predict(image: Image.Image): | |
with torch.amp.autocast_mode.autocast('cuda', enabled=True): | |
preds = model(image) | |
tag_preds = preds['tags'].sigmoid().cpu() | |
return {top_tags[i]: tag_preds[i] for i in range(len(top_tags))} | |
print("Downloading model...") | |
path = huggingface_hub.snapshot_download(MODEL_REPO) | |
print("Loading model...") | |
model = VisionModel.load_model(path) | |
model.eval() | |
with open(Path(path) / 'top_tags.txt', 'r') as f: | |
top_tags = [line.strip() for line in f.readlines() if line.strip()] | |
print("Starting server...") | |
gradio_app = gr.Interface( | |
predict, | |
inputs=gr.Image(label="Source", sources=['upload', 'webcam'], type='pil'), | |
outputs=[gr.Label(label="Result", num_top_classes=5)], | |
title="JoyTag", | |
) | |
if __name__ == '__main__': | |
gradio_app.launch() | |