File size: 9,602 Bytes
6aad9b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
027912c
6aad9b3
 
 
 
 
 
 
 
 
 
 
 
 
4bc257b
6aad9b3
 
 
dee0b8c
6aad9b3
 
9a6b683
6aad9b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
027912c
6aad9b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
import gradio as gr
import random
import time
from rank_bm25 import BM25Okapi, BM25Plus
import re
import numpy as np
from underthesea import text_normalize
import pandas as pd
from pyvi import ViTokenizer
import heapq
import torch
from transformers import AutoModel, AutoTokenizer
from pyvi.ViTokenizer import tokenize
from sklearn.metrics.pairwise import cosine_similarity
from sentence_transformers import CrossEncoder
import heapq
from sklearn.metrics.pairwise import cosine_similarity
from sentence_transformers import SentenceTransformer, CrossEncoder
from sentence_transformers import SentenceTransformer
from pyvi.ViTokenizer import tokenize
from Levenshtein import ratio as lev
from Levenshtein import ratio as lev
from openai import OpenAI
import re
import numpy as np
from underthesea import text_normalize

def chuan_hoa_unicode_go_dau(text):
  return text_normalize(text)

def viet_thuong(text):
	return text.lower()

def chuan_hoa_dau_cau(text):
	text = re.sub(r'[^\s\wáàảãạăắằẳẵặâấầẩẫậéèẻẽẹêếềểễệóòỏõọôốồổỗộơớờởỡợíìỉĩịúùủũụưứừửữựýỳỷỹỵđ_]',' ',text)
	text = re.sub(r'\s+', ' ', text).strip()
	return text

def chuan_hoa_cau(doc):
    pattern = r'(\w)([^\s\w])'
    result1 = re.sub(pattern, r'\1 \2', doc)

    pattern = r'([^\s\w])(\w)'
    result2 = re.sub(pattern, r'\1 \2', result1)

    pattern = r'\s+'
    # Loại bỏ khoảng trắng thừa
    result = re.sub(pattern, ' ', result2)
    return result

def my_pre_processing(doc):
  doc = chuan_hoa_unicode_go_dau(doc)
  doc = chuan_hoa_dau_cau(doc)
  doc = chuan_hoa_cau(doc)
  doc = viet_thuong(doc)
  return doc


def levenshtein_similarity(sentence1, sentence2):
    return lev(sentence1, sentence2)

def jaccard_similarity(sentence1, sentence2):
    # Tokenize sentences into words
    words1 = set(sentence1.lower().split())
    words2 = set(sentence2.lower().split())

    # Calculate intersection and union of the sets
    intersection = len(words1.intersection(words2))
    union = len(words1.union(words2))

    # Calculate Jaccard Similarity
    jaccard_similarity = intersection / union

    # Define min and max Jaccard similarity scores (0 and 1.0 in this case)
    min_score = 0.0
    max_score = 1.0

    # Normalize Jaccard Similarity to range from 0 to 1.0
    normalized_similarity = (jaccard_similarity - min_score) / (max_score - min_score)

    return normalized_similarity

def filter_similarity(sentence1, sentence2, debug = False):
    score_leve = levenshtein_similarity(sentence1, sentence2)
    score_jac = jaccard_similarity(sentence1, sentence2)

    if debug:
        print(sentence2)
        print("Levenshtein similarity", score_leve)
        print("Jaccard     similarity", score_jac)

    return (score_leve + score_jac)  / 2

def top_n_indexes(lst, n):
    top_items = heapq.nlargest(n, enumerate(lst), key=lambda x: x[1])
    return [i for i, s in top_items]

def BM25_retrieval(query, seg_question_corpus, top_BM25):
  query = my_pre_processing(query)
  word_tokenized_query = ViTokenizer.tokenize(query).split(" ")
  # xử lý ở level word với question
  tokenized_word_question_corpus = [doc.split(" ") for doc in seg_question_corpus]
  bm25_word_question = BM25Plus(tokenized_word_question_corpus)
  word_score_question = bm25_word_question.get_scores(word_tokenized_query)
  BM25_result = top_n_indexes(word_score_question, n=top_BM25)
  return BM25_result

def SimCSE_retrieval(query, SimCSE_set, top_Sim):
  from sentence_transformers import CrossEncoder
  query = my_pre_processing(query)
  Sim_CSE_model_question = SimCSE_set[0]
  Sim_CSE_word_ques_embeddings = SimCSE_set[1]

  seg_query = ViTokenizer.tokenize(query)
  query_vector = Sim_CSE_model_question.encode(seg_query)
  SimCSE_word_scores = list(cosine_similarity([query_vector], Sim_CSE_word_ques_embeddings)[0])
  SimCSE_result = top_n_indexes(SimCSE_word_scores, n=top_Sim)
  return SimCSE_result

def Para_retriveval(query, para_set, top_para):
  query = my_pre_processing(query)
  from sentence_transformers import SentenceTransformer, CrossEncoder
  import torch
  retri_model = para_set[0]
  para_question_embeddings = para_set[1]

  query_embed = retri_model.encode([query], device = device)
  para_score = cosine_similarity(query_embed, para_question_embeddings)[0]
  Para_result = top_n_indexes(para_score, n = top_para)
  return Para_result

def Rerank(query, retrieval_result, question_corpus, reranker, top_n):
  #rerank_model_name = 'unicamp-dl/mMiniLM-L6-v2-mmarco-v2'
  query = my_pre_processing(query)
  #reranker = CrossEncoder(rerank_model_name)
  scores = reranker.predict([(query, question_corpus[i]) for i in retrieval_result])
  id_score = list(zip(retrieval_result, scores))
  sorted_id_score = sorted(id_score, key=lambda x: x[1], reverse=True)[:(min(len(retrieval_result), top_n))]
  return sorted_id_score

def retrieval(query, question_corpus, seg_question_corpus, models, top_n = 15, thread_hold = 0.2, rerank = True):
  BM25_result = BM25_retrieval(query, seg_question_corpus, top_n)
  SimCSE_result = SimCSE_retrieval(query, models['Sim_CSE'], top_n)
  Para_result = Para_retriveval(query, models['para'], top_n)
  retrieval_result = list(set(BM25_result + SimCSE_result + Para_result))
  #sents_retri = [question_corpus[i] for i in retrieval_result]

  scores_filter = []
  while len(scores_filter) == 0 and thread_hold >= 0:
      scores_filter = []
      for id in retrieval_result:
          score = filter_similarity(my_pre_processing(query), question_corpus[id])
          if score >= thread_hold:
              scores_filter.append((score, id))
      thread_hold -= 0.1
  scores_filter = sorted(scores_filter, key = lambda x : x[0], reverse=True)
  sent_filter = [i[1] for i in scores_filter]

  if rerank == False:
    return retrieval_result
  rerank_result = Rerank(query, sent_filter, question_corpus, models['rerank'], top_n)
  sent_rerank = [i[0] for i in rerank_result]
  sent_rerank.append(-1)

  score_rerank = [i[1] for i in rerank_result]
  score_rerank = [(i - min(score_rerank))/(max(score_rerank) - min(score_rerank)) for i in score_rerank]
  data_rerank = {}
  for i in sent_rerank:
      data_rerank[i] = []

  for idx, id in enumerate(sent_rerank):
      for j in range(idx + 1, len(sent_rerank)):
          if id == -1:
              sent1 = my_pre_processing(query)
          else:
              sent1 = question_corpus[id]

          if sent_rerank[j] == -1:
              sent2 = my_pre_processing(query)
          else:
              sent2 = question_corpus[sent_rerank[j]]

          score = filter_similarity(sent1, sent2) * score_rerank[idx]
          data_rerank[id].append(score)
          data_rerank[sent_rerank[j]].append(score)

  del data_rerank[-1]
  data_rerank = {key: sum(data)/len(data) for key, data in data_rerank.items()}
  scores_rerank = [{'corpus_id': key, 'score': score} for key, score in sorted(data_rerank.items(), key = lambda x: x[1], reverse = True)]

  return scores_rerank



client = OpenAI(
    # defaults to os.environ.get("OPENAI_API_KEY")
    api_key= <API_key>,) # điền API key ở đây

def chat_gpt(prompt):
    response = client.chat.completions.create(
        model="gpt-3.5-turbo",
        messages=[{"role": "user", "content": prompt}]
    )
    return response.choices[0].message.content.strip()

if torch.cuda.is_available():
    device = 'cuda'
else:
    device = 'cpu'
    
df = pd.read_csv('./source/corpus.csv')
question_corpus = list(df['question_corpus'])
seg_question_corpus = list(df['seg_question_corpus'])
Sim_CSE_model = SentenceTransformer('VoVanPhuc/sup-SimCSE-VietNamese-phobert-base')
Sim_CSE_word_ques_embeddings = torch.load('./source/word_ques_embeddings.pth')

para_model = SentenceTransformer('sentence-transformers/paraphrase-multilingual-mpnet-base-v2')
para_question_embeddings = torch.load('./source/para_embeddings.pth')

rerank_model = CrossEncoder('unicamp-dl/mMiniLM-L6-v2-mmarco-v2')

models = {'rerank': rerank_model, 'para': [para_model, para_question_embeddings], 'Sim_CSE': [Sim_CSE_model, Sim_CSE_word_ques_embeddings]}
source_corpus = pd.read_csv("./source/new_tthc.csv")

def RAG(query):
  answer = {'query': query}
  retri_result = retrieval(query, question_corpus, seg_question_corpus, models, top_n = 25, rerank = True)
  if len(retri_result) == 0:
    answer['answer'] = "Không tìm thấy thủ tục hành chính phù hợp"
    return answer
  corpus_id = retri_result[0]['corpus_id']
  info = source_corpus.loc[corpus_id]
  answer['tthc'] = info['PROCEDURE_NAME']
  prompt = f"Chỉ dựa vào thông tin ngữ cảnh tôi cung cấp để trả lời câu hỏi. Chú ý giản cách dòng hợp lý: \n Câu hỏi: {answer['query']} \n Ngữ cảnh: {info['IMPL_ORDER']}"
  #print("RAG function Propmt", prompt)
  answer['answer'] = chat_gpt(prompt)
  answer['reference'] = f"https://dichvucong.gov.vn/p/home/dvc-tthc-thu-tuc-hanh-chinh-chi-tiet.html?ma_thu_tuc={info['ID']}"
  return answer


with gr.Blocks() as demo:
    chatbot = gr.Chatbot()
    msg = gr.Textbox()
    clear = gr.ClearButton([msg, chatbot])

    def respond(message, chat_history):
        answer = RAG(message)
        bot_message = f"Tên thủ tục hành chính: {answer['tthc']}\nCâu trả lời:\n{answer['answer']}\nNguồn: {answer['reference']}"
        chat_history.append((message, bot_message))
        time.sleep(2)
        return "", chat_history

    msg.submit(respond, [msg, chatbot], [msg, chatbot])

if __name__ == "__main__":
    demo.launch(inline = False)