Spaces:
Runtime error
Runtime error
File size: 9,602 Bytes
6aad9b3 027912c 6aad9b3 4bc257b 6aad9b3 dee0b8c 6aad9b3 9a6b683 6aad9b3 027912c 6aad9b3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 |
import gradio as gr
import random
import time
from rank_bm25 import BM25Okapi, BM25Plus
import re
import numpy as np
from underthesea import text_normalize
import pandas as pd
from pyvi import ViTokenizer
import heapq
import torch
from transformers import AutoModel, AutoTokenizer
from pyvi.ViTokenizer import tokenize
from sklearn.metrics.pairwise import cosine_similarity
from sentence_transformers import CrossEncoder
import heapq
from sklearn.metrics.pairwise import cosine_similarity
from sentence_transformers import SentenceTransformer, CrossEncoder
from sentence_transformers import SentenceTransformer
from pyvi.ViTokenizer import tokenize
from Levenshtein import ratio as lev
from Levenshtein import ratio as lev
from openai import OpenAI
import re
import numpy as np
from underthesea import text_normalize
def chuan_hoa_unicode_go_dau(text):
return text_normalize(text)
def viet_thuong(text):
return text.lower()
def chuan_hoa_dau_cau(text):
text = re.sub(r'[^\s\wáàảãạăắằẳẵặâấầẩẫậéèẻẽẹêếềểễệóòỏõọôốồổỗộơớờởỡợíìỉĩịúùủũụưứừửữựýỳỷỹỵđ_]',' ',text)
text = re.sub(r'\s+', ' ', text).strip()
return text
def chuan_hoa_cau(doc):
pattern = r'(\w)([^\s\w])'
result1 = re.sub(pattern, r'\1 \2', doc)
pattern = r'([^\s\w])(\w)'
result2 = re.sub(pattern, r'\1 \2', result1)
pattern = r'\s+'
# Loại bỏ khoảng trắng thừa
result = re.sub(pattern, ' ', result2)
return result
def my_pre_processing(doc):
doc = chuan_hoa_unicode_go_dau(doc)
doc = chuan_hoa_dau_cau(doc)
doc = chuan_hoa_cau(doc)
doc = viet_thuong(doc)
return doc
def levenshtein_similarity(sentence1, sentence2):
return lev(sentence1, sentence2)
def jaccard_similarity(sentence1, sentence2):
# Tokenize sentences into words
words1 = set(sentence1.lower().split())
words2 = set(sentence2.lower().split())
# Calculate intersection and union of the sets
intersection = len(words1.intersection(words2))
union = len(words1.union(words2))
# Calculate Jaccard Similarity
jaccard_similarity = intersection / union
# Define min and max Jaccard similarity scores (0 and 1.0 in this case)
min_score = 0.0
max_score = 1.0
# Normalize Jaccard Similarity to range from 0 to 1.0
normalized_similarity = (jaccard_similarity - min_score) / (max_score - min_score)
return normalized_similarity
def filter_similarity(sentence1, sentence2, debug = False):
score_leve = levenshtein_similarity(sentence1, sentence2)
score_jac = jaccard_similarity(sentence1, sentence2)
if debug:
print(sentence2)
print("Levenshtein similarity", score_leve)
print("Jaccard similarity", score_jac)
return (score_leve + score_jac) / 2
def top_n_indexes(lst, n):
top_items = heapq.nlargest(n, enumerate(lst), key=lambda x: x[1])
return [i for i, s in top_items]
def BM25_retrieval(query, seg_question_corpus, top_BM25):
query = my_pre_processing(query)
word_tokenized_query = ViTokenizer.tokenize(query).split(" ")
# xử lý ở level word với question
tokenized_word_question_corpus = [doc.split(" ") for doc in seg_question_corpus]
bm25_word_question = BM25Plus(tokenized_word_question_corpus)
word_score_question = bm25_word_question.get_scores(word_tokenized_query)
BM25_result = top_n_indexes(word_score_question, n=top_BM25)
return BM25_result
def SimCSE_retrieval(query, SimCSE_set, top_Sim):
from sentence_transformers import CrossEncoder
query = my_pre_processing(query)
Sim_CSE_model_question = SimCSE_set[0]
Sim_CSE_word_ques_embeddings = SimCSE_set[1]
seg_query = ViTokenizer.tokenize(query)
query_vector = Sim_CSE_model_question.encode(seg_query)
SimCSE_word_scores = list(cosine_similarity([query_vector], Sim_CSE_word_ques_embeddings)[0])
SimCSE_result = top_n_indexes(SimCSE_word_scores, n=top_Sim)
return SimCSE_result
def Para_retriveval(query, para_set, top_para):
query = my_pre_processing(query)
from sentence_transformers import SentenceTransformer, CrossEncoder
import torch
retri_model = para_set[0]
para_question_embeddings = para_set[1]
query_embed = retri_model.encode([query], device = device)
para_score = cosine_similarity(query_embed, para_question_embeddings)[0]
Para_result = top_n_indexes(para_score, n = top_para)
return Para_result
def Rerank(query, retrieval_result, question_corpus, reranker, top_n):
#rerank_model_name = 'unicamp-dl/mMiniLM-L6-v2-mmarco-v2'
query = my_pre_processing(query)
#reranker = CrossEncoder(rerank_model_name)
scores = reranker.predict([(query, question_corpus[i]) for i in retrieval_result])
id_score = list(zip(retrieval_result, scores))
sorted_id_score = sorted(id_score, key=lambda x: x[1], reverse=True)[:(min(len(retrieval_result), top_n))]
return sorted_id_score
def retrieval(query, question_corpus, seg_question_corpus, models, top_n = 15, thread_hold = 0.2, rerank = True):
BM25_result = BM25_retrieval(query, seg_question_corpus, top_n)
SimCSE_result = SimCSE_retrieval(query, models['Sim_CSE'], top_n)
Para_result = Para_retriveval(query, models['para'], top_n)
retrieval_result = list(set(BM25_result + SimCSE_result + Para_result))
#sents_retri = [question_corpus[i] for i in retrieval_result]
scores_filter = []
while len(scores_filter) == 0 and thread_hold >= 0:
scores_filter = []
for id in retrieval_result:
score = filter_similarity(my_pre_processing(query), question_corpus[id])
if score >= thread_hold:
scores_filter.append((score, id))
thread_hold -= 0.1
scores_filter = sorted(scores_filter, key = lambda x : x[0], reverse=True)
sent_filter = [i[1] for i in scores_filter]
if rerank == False:
return retrieval_result
rerank_result = Rerank(query, sent_filter, question_corpus, models['rerank'], top_n)
sent_rerank = [i[0] for i in rerank_result]
sent_rerank.append(-1)
score_rerank = [i[1] for i in rerank_result]
score_rerank = [(i - min(score_rerank))/(max(score_rerank) - min(score_rerank)) for i in score_rerank]
data_rerank = {}
for i in sent_rerank:
data_rerank[i] = []
for idx, id in enumerate(sent_rerank):
for j in range(idx + 1, len(sent_rerank)):
if id == -1:
sent1 = my_pre_processing(query)
else:
sent1 = question_corpus[id]
if sent_rerank[j] == -1:
sent2 = my_pre_processing(query)
else:
sent2 = question_corpus[sent_rerank[j]]
score = filter_similarity(sent1, sent2) * score_rerank[idx]
data_rerank[id].append(score)
data_rerank[sent_rerank[j]].append(score)
del data_rerank[-1]
data_rerank = {key: sum(data)/len(data) for key, data in data_rerank.items()}
scores_rerank = [{'corpus_id': key, 'score': score} for key, score in sorted(data_rerank.items(), key = lambda x: x[1], reverse = True)]
return scores_rerank
client = OpenAI(
# defaults to os.environ.get("OPENAI_API_KEY")
api_key= <API_key>,) # điền API key ở đây
def chat_gpt(prompt):
response = client.chat.completions.create(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": prompt}]
)
return response.choices[0].message.content.strip()
if torch.cuda.is_available():
device = 'cuda'
else:
device = 'cpu'
df = pd.read_csv('./source/corpus.csv')
question_corpus = list(df['question_corpus'])
seg_question_corpus = list(df['seg_question_corpus'])
Sim_CSE_model = SentenceTransformer('VoVanPhuc/sup-SimCSE-VietNamese-phobert-base')
Sim_CSE_word_ques_embeddings = torch.load('./source/word_ques_embeddings.pth')
para_model = SentenceTransformer('sentence-transformers/paraphrase-multilingual-mpnet-base-v2')
para_question_embeddings = torch.load('./source/para_embeddings.pth')
rerank_model = CrossEncoder('unicamp-dl/mMiniLM-L6-v2-mmarco-v2')
models = {'rerank': rerank_model, 'para': [para_model, para_question_embeddings], 'Sim_CSE': [Sim_CSE_model, Sim_CSE_word_ques_embeddings]}
source_corpus = pd.read_csv("./source/new_tthc.csv")
def RAG(query):
answer = {'query': query}
retri_result = retrieval(query, question_corpus, seg_question_corpus, models, top_n = 25, rerank = True)
if len(retri_result) == 0:
answer['answer'] = "Không tìm thấy thủ tục hành chính phù hợp"
return answer
corpus_id = retri_result[0]['corpus_id']
info = source_corpus.loc[corpus_id]
answer['tthc'] = info['PROCEDURE_NAME']
prompt = f"Chỉ dựa vào thông tin ngữ cảnh tôi cung cấp để trả lời câu hỏi. Chú ý giản cách dòng hợp lý: \n Câu hỏi: {answer['query']} \n Ngữ cảnh: {info['IMPL_ORDER']}"
#print("RAG function Propmt", prompt)
answer['answer'] = chat_gpt(prompt)
answer['reference'] = f"https://dichvucong.gov.vn/p/home/dvc-tthc-thu-tuc-hanh-chinh-chi-tiet.html?ma_thu_tuc={info['ID']}"
return answer
with gr.Blocks() as demo:
chatbot = gr.Chatbot()
msg = gr.Textbox()
clear = gr.ClearButton([msg, chatbot])
def respond(message, chat_history):
answer = RAG(message)
bot_message = f"Tên thủ tục hành chính: {answer['tthc']}\nCâu trả lời:\n{answer['answer']}\nNguồn: {answer['reference']}"
chat_history.append((message, bot_message))
time.sleep(2)
return "", chat_history
msg.submit(respond, [msg, chatbot], [msg, chatbot])
if __name__ == "__main__":
demo.launch(inline = False)
|