Spaces:
Running
Running
import torch | |
from hand_utils.mano_wrapper import MANO | |
from hand_utils.geometry_utils import aa_to_rotmat | |
import numpy as np | |
def run_mano(trans, root_orient, hand_pose, is_right=None, betas=None, use_cuda=True): | |
""" | |
Forward pass of the SMPL model and populates pred_data accordingly with | |
joints3d, verts3d, points3d. | |
trans : B x T x 3 | |
root_orient : B x T x 3 | |
body_pose : B x T x J*3 | |
betas : (optional) B x D | |
""" | |
MANO_cfg = { | |
'DATA_DIR': '_DATA/data/', | |
'MODEL_PATH': '_DATA/data/mano', | |
'GENDER': 'neutral', | |
'NUM_HAND_JOINTS': 15, | |
'CREATE_BODY_POSE': False | |
} | |
mano_cfg = {k.lower(): v for k,v in MANO_cfg.items()} | |
mano = MANO(**mano_cfg) | |
if use_cuda: | |
mano = mano.cuda() | |
B, T, _ = root_orient.shape | |
NUM_JOINTS = 15 | |
mano_params = { | |
'global_orient': root_orient.reshape(B*T, -1), | |
'hand_pose': hand_pose.reshape(B*T*NUM_JOINTS, 3), | |
'betas': betas.reshape(B*T, -1), | |
} | |
rotmat_mano_params = mano_params | |
rotmat_mano_params['global_orient'] = aa_to_rotmat(mano_params['global_orient']).view(B*T, 1, 3, 3) | |
rotmat_mano_params['hand_pose'] = aa_to_rotmat(mano_params['hand_pose']).view(B*T, NUM_JOINTS, 3, 3) | |
rotmat_mano_params['transl'] = trans.reshape(B*T, 3) | |
if use_cuda: | |
mano_output = mano(**{k: v.float().cuda() for k,v in rotmat_mano_params.items()}, pose2rot=False) | |
else: | |
mano_output = mano(**{k: v.float() for k,v in rotmat_mano_params.items()}, pose2rot=False) | |
faces_right = mano.faces | |
faces_new = np.array([[92, 38, 234], | |
[234, 38, 239], | |
[38, 122, 239], | |
[239, 122, 279], | |
[122, 118, 279], | |
[279, 118, 215], | |
[118, 117, 215], | |
[215, 117, 214], | |
[117, 119, 214], | |
[214, 119, 121], | |
[119, 120, 121], | |
[121, 120, 78], | |
[120, 108, 78], | |
[78, 108, 79]]) | |
faces_right = np.concatenate([faces_right, faces_new], axis=0) | |
faces_n = len(faces_right) | |
faces_left = faces_right[:,[0,2,1]] | |
outputs = { | |
"joints": mano_output.joints.reshape(B, T, -1, 3), | |
"vertices": mano_output.vertices.reshape(B, T, -1, 3), | |
} | |
if not is_right is None: | |
# outputs["vertices"][..., 0] = (2*is_right-1)*outputs["vertices"][..., 0] | |
# outputs["joints"][..., 0] = (2*is_right-1)*outputs["joints"][..., 0] | |
is_right = (is_right[:, :, 0].cpu().numpy() > 0) | |
faces_result = np.zeros((B, T, faces_n, 3)) | |
faces_right_expanded = np.expand_dims(np.expand_dims(faces_right, axis=0), axis=0) | |
faces_left_expanded = np.expand_dims(np.expand_dims(faces_left, axis=0), axis=0) | |
faces_result = np.where(is_right[..., np.newaxis, np.newaxis], faces_right_expanded, faces_left_expanded) | |
outputs["faces"] = torch.from_numpy(faces_result.astype(np.int32)) | |
return outputs | |
def run_mano_left(trans, root_orient, hand_pose, is_right=None, betas=None, use_cuda=True, fix_shapedirs=True): | |
""" | |
Forward pass of the SMPL model and populates pred_data accordingly with | |
joints3d, verts3d, points3d. | |
trans : B x T x 3 | |
root_orient : B x T x 3 | |
body_pose : B x T x J*3 | |
betas : (optional) B x D | |
""" | |
MANO_cfg = { | |
'DATA_DIR': '_DATA/data_left/', | |
'MODEL_PATH': '_DATA/data_left/mano_left', | |
'GENDER': 'neutral', | |
'NUM_HAND_JOINTS': 15, | |
'CREATE_BODY_POSE': False, | |
'is_rhand': False | |
} | |
mano_cfg = {k.lower(): v for k,v in MANO_cfg.items()} | |
mano = MANO(**mano_cfg) | |
if use_cuda: | |
mano = mano.cuda() | |
# fix MANO shapedirs of the left hand bug (https://github.com/vchoutas/smplx/issues/48) | |
if fix_shapedirs: | |
mano.shapedirs[:, 0, :] *= -1 | |
B, T, _ = root_orient.shape | |
NUM_JOINTS = 15 | |
mano_params = { | |
'global_orient': root_orient.reshape(B*T, -1), | |
'hand_pose': hand_pose.reshape(B*T*NUM_JOINTS, 3), | |
'betas': betas.reshape(B*T, -1), | |
} | |
rotmat_mano_params = mano_params | |
rotmat_mano_params['global_orient'] = aa_to_rotmat(mano_params['global_orient']).view(B*T, 1, 3, 3) | |
rotmat_mano_params['hand_pose'] = aa_to_rotmat(mano_params['hand_pose']).view(B*T, NUM_JOINTS, 3, 3) | |
rotmat_mano_params['transl'] = trans.reshape(B*T, 3) | |
if use_cuda: | |
mano_output = mano(**{k: v.float().cuda() for k,v in rotmat_mano_params.items()}, pose2rot=False) | |
else: | |
mano_output = mano(**{k: v.float() for k,v in rotmat_mano_params.items()}, pose2rot=False) | |
faces_right = mano.faces | |
faces_new = np.array([[92, 38, 234], | |
[234, 38, 239], | |
[38, 122, 239], | |
[239, 122, 279], | |
[122, 118, 279], | |
[279, 118, 215], | |
[118, 117, 215], | |
[215, 117, 214], | |
[117, 119, 214], | |
[214, 119, 121], | |
[119, 120, 121], | |
[121, 120, 78], | |
[120, 108, 78], | |
[78, 108, 79]]) | |
faces_right = np.concatenate([faces_right, faces_new], axis=0) | |
faces_n = len(faces_right) | |
faces_left = faces_right[:,[0,2,1]] | |
outputs = { | |
"joints": mano_output.joints.reshape(B, T, -1, 3), | |
"vertices": mano_output.vertices.reshape(B, T, -1, 3), | |
} | |
if not is_right is None: | |
# outputs["vertices"][..., 0] = (2*is_right-1)*outputs["vertices"][..., 0] | |
# outputs["joints"][..., 0] = (2*is_right-1)*outputs["joints"][..., 0] | |
is_right = (is_right[:, :, 0].cpu().numpy() > 0) | |
faces_result = np.zeros((B, T, faces_n, 3)) | |
faces_right_expanded = np.expand_dims(np.expand_dims(faces_right, axis=0), axis=0) | |
faces_left_expanded = np.expand_dims(np.expand_dims(faces_left, axis=0), axis=0) | |
faces_result = np.where(is_right[..., np.newaxis, np.newaxis], faces_right_expanded, faces_left_expanded) | |
outputs["faces"] = torch.from_numpy(faces_result.astype(np.int32)) | |
return outputs | |
def run_mano_twohands(init_trans, init_rot, init_hand_pose, is_right, init_betas, use_cuda=True, fix_shapedirs=True): | |
outputs_left = run_mano_left(init_trans[0:1], init_rot[0:1], init_hand_pose[0:1], None, init_betas[0:1], use_cuda=use_cuda, fix_shapedirs=fix_shapedirs) | |
outputs_right = run_mano(init_trans[1:2], init_rot[1:2], init_hand_pose[1:2], None, init_betas[1:2], use_cuda=use_cuda) | |
outputs_two = { | |
"vertices": torch.cat((outputs_left["vertices"], outputs_right["vertices"]), dim=0), | |
"joints": torch.cat((outputs_left["joints"], outputs_right["joints"]), dim=0) | |
} | |
return outputs_two |