HaWoR / infiller /hand_utils /geometry.py
ThunderVVV's picture
update
5f028d6
import numpy as np
import torch
from torch.nn import functional as F
def perspective_projection(points, rotation, translation,
focal_length, camera_center, distortion=None):
"""
This function computes the perspective projection of a set of points.
Input:
points (bs, N, 3): 3D points
rotation (bs, 3, 3): Camera rotation
translation (bs, 3): Camera translation
focal_length (bs,) or scalar: Focal length
camera_center (bs, 2): Camera center
"""
batch_size = points.shape[0]
# Extrinsic
if rotation is not None:
points = torch.einsum('bij,bkj->bki', rotation, points)
if translation is not None:
points = points + translation.unsqueeze(1)
if distortion is not None:
kc = distortion
points = points[:,:,:2] / points[:,:,2:]
r2 = points[:,:,0]**2 + points[:,:,1]**2
dx = (2 * kc[:,[2]] * points[:,:,0] * points[:,:,1]
+ kc[:,[3]] * (r2 + 2*points[:,:,0]**2))
dy = (2 * kc[:,[3]] * points[:,:,0] * points[:,:,1]
+ kc[:,[2]] * (r2 + 2*points[:,:,1]**2))
x = (1 + kc[:,[0]]*r2 + kc[:,[1]]*r2.pow(2) + kc[:,[4]]*r2.pow(3)) * points[:,:,0] + dx
y = (1 + kc[:,[0]]*r2 + kc[:,[1]]*r2.pow(2) + kc[:,[4]]*r2.pow(3)) * points[:,:,1] + dy
points = torch.stack([x, y, torch.ones_like(x)], dim=-1)
# Intrinsic
K = torch.zeros([batch_size, 3, 3], device=points.device)
K[:,0,0] = focal_length
K[:,1,1] = focal_length
K[:,2,2] = 1.
K[:,:-1, -1] = camera_center
# Apply camera intrinsicsrf
points = points / points[:,:,-1].unsqueeze(-1)
projected_points = torch.einsum('bij,bkj->bki', K, points)
projected_points = projected_points[:, :, :-1]
return projected_points
def avg_rot(rot):
# input [B,...,3,3] --> output [...,3,3]
rot = rot.mean(dim=0)
U, _, V = torch.svd(rot)
rot = U @ V.transpose(-1, -2)
return rot
def rot9d_to_rotmat(x):
"""Convert 9D rotation representation to 3x3 rotation matrix.
Based on Levinson et al., "An Analysis of SVD for Deep Rotation Estimation"
Input:
(B,9) or (B,J*9) Batch of 9D rotation (interpreted as 3x3 est rotmat)
Output:
(B,3,3) or (B*J,3,3) Batch of corresponding rotation matrices
"""
x = x.view(-1,3,3)
u, _, vh = torch.linalg.svd(x)
sig = torch.eye(3).expand(len(x), 3, 3).clone()
sig = sig.to(x.device)
sig[:, -1, -1] = (u @ vh).det()
R = u @ sig @ vh
return R
"""
Deprecated in favor of: rotation_conversions.py
Useful geometric operations, e.g. differentiable Rodrigues formula
Parts of the code are taken from https://github.com/MandyMo/pytorch_HMR
"""
def batch_rodrigues(theta):
"""Convert axis-angle representation to rotation matrix.
Args:
theta: size = [B, 3]
Returns:
Rotation matrix corresponding to the quaternion -- size = [B, 3, 3]
"""
l1norm = torch.norm(theta + 1e-8, p = 2, dim = 1)
angle = torch.unsqueeze(l1norm, -1)
normalized = torch.div(theta, angle)
angle = angle * 0.5
v_cos = torch.cos(angle)
v_sin = torch.sin(angle)
quat = torch.cat([v_cos, v_sin * normalized], dim = 1)
return quat_to_rotmat(quat)
def quat_to_rotmat(quat):
"""Convert quaternion coefficients to rotation matrix.
Args:
quat: size = [B, 4] 4 <===>(w, x, y, z)
Returns:
Rotation matrix corresponding to the quaternion -- size = [B, 3, 3]
"""
norm_quat = quat
norm_quat = norm_quat/norm_quat.norm(p=2, dim=1, keepdim=True)
w, x, y, z = norm_quat[:,0], norm_quat[:,1], norm_quat[:,2], norm_quat[:,3]
B = quat.size(0)
w2, x2, y2, z2 = w.pow(2), x.pow(2), y.pow(2), z.pow(2)
wx, wy, wz = w*x, w*y, w*z
xy, xz, yz = x*y, x*z, y*z
rotMat = torch.stack([w2 + x2 - y2 - z2, 2*xy - 2*wz, 2*wy + 2*xz,
2*wz + 2*xy, w2 - x2 + y2 - z2, 2*yz - 2*wx,
2*xz - 2*wy, 2*wx + 2*yz, w2 - x2 - y2 + z2], dim=1).view(B, 3, 3)
return rotMat
def rot6d_to_rotmat(x):
"""Convert 6D rotation representation to 3x3 rotation matrix.
Based on Zhou et al., "On the Continuity of Rotation Representations in Neural Networks", CVPR 2019
Input:
(B,6) Batch of 6-D rotation representations
Output:
(B,3,3) Batch of corresponding rotation matrices
"""
x = x.view(-1,3,2)
a1 = x[:, :, 0]
a2 = x[:, :, 1]
b1 = F.normalize(a1)
b2 = F.normalize(a2 - torch.einsum('bi,bi->b', b1, a2).unsqueeze(-1) * b1)
b3 = torch.cross(b1, b2)
return torch.stack((b1, b2, b3), dim=-1)
def rot6d_to_rotmat_hmr2(x: torch.Tensor) -> torch.Tensor:
"""
Convert 6D rotation representation to 3x3 rotation matrix.
Based on Zhou et al., "On the Continuity of Rotation Representations in Neural Networks", CVPR 2019
Args:
x (torch.Tensor): (B,6) Batch of 6-D rotation representations.
Returns:
torch.Tensor: Batch of corresponding rotation matrices with shape (B,3,3).
"""
x = x.reshape(-1,2,3).permute(0, 2, 1).contiguous()
a1 = x[:, :, 0]
a2 = x[:, :, 1]
b1 = F.normalize(a1)
b2 = F.normalize(a2 - torch.einsum('bi,bi->b', b1, a2).unsqueeze(-1) * b1)
b3 = torch.cross(b1, b2)
return torch.stack((b1, b2, b3), dim=-1)
def rotmat_to_rot6d(rotmat):
""" Inverse function of the above.
Input:
(B,3,3) Batch of corresponding rotation matrices
Output:
(B,6) Batch of 6-D rotation representations
"""
# rot6d = rotmat[:, :, :2]
rot6d = rotmat[...,:2]
rot6d = rot6d.reshape(rot6d.size(0), -1)
return rot6d
def rotation_matrix_to_angle_axis(rotation_matrix):
"""
This function is borrowed from https://github.com/kornia/kornia
Convert 3x4 rotation matrix to Rodrigues vector
Args:
rotation_matrix (Tensor): rotation matrix.
Returns:
Tensor: Rodrigues vector transformation.
Shape:
- Input: :math:`(N, 3, 4)`
- Output: :math:`(N, 3)`
Example:
>>> input = torch.rand(2, 3, 4) # Nx4x4
>>> output = tgm.rotation_matrix_to_angle_axis(input) # Nx3
"""
if rotation_matrix.shape[1:] == (3,3):
rot_mat = rotation_matrix.reshape(-1, 3, 3)
hom = torch.tensor([0, 0, 1], dtype=torch.float32,
device=rotation_matrix.device).reshape(1, 3, 1).expand(rot_mat.shape[0], -1, -1)
rotation_matrix = torch.cat([rot_mat, hom], dim=-1)
quaternion = rotation_matrix_to_quaternion(rotation_matrix)
aa = quaternion_to_angle_axis(quaternion)
aa[torch.isnan(aa)] = 0.0
return aa
def quaternion_to_angle_axis(quaternion: torch.Tensor) -> torch.Tensor:
"""
This function is borrowed from https://github.com/kornia/kornia
Convert quaternion vector to angle axis of rotation.
Adapted from ceres C++ library: ceres-solver/include/ceres/rotation.h
Args:
quaternion (torch.Tensor): tensor with quaternions.
Return:
torch.Tensor: tensor with angle axis of rotation.
Shape:
- Input: :math:`(*, 4)` where `*` means, any number of dimensions
- Output: :math:`(*, 3)`
Example:
>>> quaternion = torch.rand(2, 4) # Nx4
>>> angle_axis = tgm.quaternion_to_angle_axis(quaternion) # Nx3
"""
if not torch.is_tensor(quaternion):
raise TypeError("Input type is not a torch.Tensor. Got {}".format(
type(quaternion)))
if not quaternion.shape[-1] == 4:
raise ValueError("Input must be a tensor of shape Nx4 or 4. Got {}"
.format(quaternion.shape))
# unpack input and compute conversion
q1: torch.Tensor = quaternion[..., 1]
q2: torch.Tensor = quaternion[..., 2]
q3: torch.Tensor = quaternion[..., 3]
sin_squared_theta: torch.Tensor = q1 * q1 + q2 * q2 + q3 * q3
sin_theta: torch.Tensor = torch.sqrt(sin_squared_theta)
cos_theta: torch.Tensor = quaternion[..., 0]
two_theta: torch.Tensor = 2.0 * torch.where(
cos_theta < 0.0,
torch.atan2(-sin_theta, -cos_theta),
torch.atan2(sin_theta, cos_theta))
k_pos: torch.Tensor = two_theta / sin_theta
k_neg: torch.Tensor = 2.0 * torch.ones_like(sin_theta)
k: torch.Tensor = torch.where(sin_squared_theta > 0.0, k_pos, k_neg)
angle_axis: torch.Tensor = torch.zeros_like(quaternion)[..., :3]
angle_axis[..., 0] += q1 * k
angle_axis[..., 1] += q2 * k
angle_axis[..., 2] += q3 * k
return angle_axis
def rotation_matrix_to_quaternion(rotation_matrix, eps=1e-6):
"""
This function is borrowed from https://github.com/kornia/kornia
Convert 3x4 rotation matrix to 4d quaternion vector
This algorithm is based on algorithm described in
https://github.com/KieranWynn/pyquaternion/blob/master/pyquaternion/quaternion.py#L201
Args:
rotation_matrix (Tensor): the rotation matrix to convert.
Return:
Tensor: the rotation in quaternion
Shape:
- Input: :math:`(N, 3, 4)`
- Output: :math:`(N, 4)`
Example:
>>> input = torch.rand(4, 3, 4) # Nx3x4
>>> output = tgm.rotation_matrix_to_quaternion(input) # Nx4
"""
if not torch.is_tensor(rotation_matrix):
raise TypeError("Input type is not a torch.Tensor. Got {}".format(
type(rotation_matrix)))
if len(rotation_matrix.shape) > 3:
raise ValueError(
"Input size must be a three dimensional tensor. Got {}".format(
rotation_matrix.shape))
if not rotation_matrix.shape[-2:] == (3, 4):
raise ValueError(
"Input size must be a N x 3 x 4 tensor. Got {}".format(
rotation_matrix.shape))
rmat_t = torch.transpose(rotation_matrix, 1, 2)
mask_d2 = rmat_t[:, 2, 2] < eps
mask_d0_d1 = rmat_t[:, 0, 0] > rmat_t[:, 1, 1]
mask_d0_nd1 = rmat_t[:, 0, 0] < -rmat_t[:, 1, 1]
t0 = 1 + rmat_t[:, 0, 0] - rmat_t[:, 1, 1] - rmat_t[:, 2, 2]
q0 = torch.stack([rmat_t[:, 1, 2] - rmat_t[:, 2, 1],
t0, rmat_t[:, 0, 1] + rmat_t[:, 1, 0],
rmat_t[:, 2, 0] + rmat_t[:, 0, 2]], -1)
t0_rep = t0.repeat(4, 1).t()
t1 = 1 - rmat_t[:, 0, 0] + rmat_t[:, 1, 1] - rmat_t[:, 2, 2]
q1 = torch.stack([rmat_t[:, 2, 0] - rmat_t[:, 0, 2],
rmat_t[:, 0, 1] + rmat_t[:, 1, 0],
t1, rmat_t[:, 1, 2] + rmat_t[:, 2, 1]], -1)
t1_rep = t1.repeat(4, 1).t()
t2 = 1 - rmat_t[:, 0, 0] - rmat_t[:, 1, 1] + rmat_t[:, 2, 2]
q2 = torch.stack([rmat_t[:, 0, 1] - rmat_t[:, 1, 0],
rmat_t[:, 2, 0] + rmat_t[:, 0, 2],
rmat_t[:, 1, 2] + rmat_t[:, 2, 1], t2], -1)
t2_rep = t2.repeat(4, 1).t()
t3 = 1 + rmat_t[:, 0, 0] + rmat_t[:, 1, 1] + rmat_t[:, 2, 2]
q3 = torch.stack([t3, rmat_t[:, 1, 2] - rmat_t[:, 2, 1],
rmat_t[:, 2, 0] - rmat_t[:, 0, 2],
rmat_t[:, 0, 1] - rmat_t[:, 1, 0]], -1)
t3_rep = t3.repeat(4, 1).t()
mask_c0 = mask_d2 * mask_d0_d1
mask_c1 = mask_d2 * ~mask_d0_d1
mask_c2 = ~mask_d2 * mask_d0_nd1
mask_c3 = ~mask_d2 * ~mask_d0_nd1
mask_c0 = mask_c0.view(-1, 1).type_as(q0)
mask_c1 = mask_c1.view(-1, 1).type_as(q1)
mask_c2 = mask_c2.view(-1, 1).type_as(q2)
mask_c3 = mask_c3.view(-1, 1).type_as(q3)
q = q0 * mask_c0 + q1 * mask_c1 + q2 * mask_c2 + q3 * mask_c3
q /= torch.sqrt(t0_rep * mask_c0 + t1_rep * mask_c1 + # noqa
t2_rep * mask_c2 + t3_rep * mask_c3) # noqa
q *= 0.5
return q
def estimate_translation_np(S, joints_2d, joints_conf, focal_length=5000., img_size=224.):
"""
This function is borrowed from https://github.com/nkolot/SPIN/utils/geometry.py
Find camera translation that brings 3D joints S closest to 2D the corresponding joints_2d.
Input:
S: (25, 3) 3D joint locations
joints: (25, 3) 2D joint locations and confidence
Returns:
(3,) camera translation vector
"""
num_joints = S.shape[0]
# focal length
f = np.array([focal_length,focal_length])
# optical center
center = np.array([img_size/2., img_size/2.])
# transformations
Z = np.reshape(np.tile(S[:,2],(2,1)).T,-1)
XY = np.reshape(S[:,0:2],-1)
O = np.tile(center,num_joints)
F = np.tile(f,num_joints)
weight2 = np.reshape(np.tile(np.sqrt(joints_conf),(2,1)).T,-1)
# least squares
Q = np.array([F*np.tile(np.array([1,0]),num_joints), F*np.tile(np.array([0,1]),num_joints), O-np.reshape(joints_2d,-1)]).T
c = (np.reshape(joints_2d,-1)-O)*Z - F*XY
# weighted least squares
W = np.diagflat(weight2)
Q = np.dot(W,Q)
c = np.dot(W,c)
# square matrix
A = np.dot(Q.T,Q)
b = np.dot(Q.T,c)
# solution
trans = np.linalg.solve(A, b)
return trans
def estimate_translation(S, joints_2d, focal_length=5000., img_size=224.):
"""Find camera translation that brings 3D joints S closest to 2D the corresponding joints_2d.
Input:
S: (B, 49, 3) 3D joint locations
joints: (B, 49, 3) 2D joint locations and confidence
Returns:
(B, 3) camera translation vectors
"""
device = S.device
# Use only joints 25:49 (GT joints)
S = S[:, -24:, :3].cpu().numpy()
joints_2d = joints_2d[:, -24:, :].cpu().numpy()
joints_conf = joints_2d[:, :, -1]
joints_2d = joints_2d[:, :, :-1]
trans = np.zeros((S.shape[0], 3), dtype=np.float32)
# Find the translation for each example in the batch
for i in range(S.shape[0]):
S_i = S[i]
joints_i = joints_2d[i]
conf_i = joints_conf[i]
trans[i] = estimate_translation_np(S_i, joints_i, conf_i, focal_length=focal_length, img_size=img_size)
return torch.from_numpy(trans).to(device)