Spaces:
Running
Running
import numpy as np | |
import torch | |
from torch.nn import functional as F | |
def perspective_projection(points, rotation, translation, | |
focal_length, camera_center, distortion=None): | |
""" | |
This function computes the perspective projection of a set of points. | |
Input: | |
points (bs, N, 3): 3D points | |
rotation (bs, 3, 3): Camera rotation | |
translation (bs, 3): Camera translation | |
focal_length (bs,) or scalar: Focal length | |
camera_center (bs, 2): Camera center | |
""" | |
batch_size = points.shape[0] | |
# Extrinsic | |
if rotation is not None: | |
points = torch.einsum('bij,bkj->bki', rotation, points) | |
if translation is not None: | |
points = points + translation.unsqueeze(1) | |
if distortion is not None: | |
kc = distortion | |
points = points[:,:,:2] / points[:,:,2:] | |
r2 = points[:,:,0]**2 + points[:,:,1]**2 | |
dx = (2 * kc[:,[2]] * points[:,:,0] * points[:,:,1] | |
+ kc[:,[3]] * (r2 + 2*points[:,:,0]**2)) | |
dy = (2 * kc[:,[3]] * points[:,:,0] * points[:,:,1] | |
+ kc[:,[2]] * (r2 + 2*points[:,:,1]**2)) | |
x = (1 + kc[:,[0]]*r2 + kc[:,[1]]*r2.pow(2) + kc[:,[4]]*r2.pow(3)) * points[:,:,0] + dx | |
y = (1 + kc[:,[0]]*r2 + kc[:,[1]]*r2.pow(2) + kc[:,[4]]*r2.pow(3)) * points[:,:,1] + dy | |
points = torch.stack([x, y, torch.ones_like(x)], dim=-1) | |
# Intrinsic | |
K = torch.zeros([batch_size, 3, 3], device=points.device) | |
K[:,0,0] = focal_length | |
K[:,1,1] = focal_length | |
K[:,2,2] = 1. | |
K[:,:-1, -1] = camera_center | |
# Apply camera intrinsicsrf | |
points = points / points[:,:,-1].unsqueeze(-1) | |
projected_points = torch.einsum('bij,bkj->bki', K, points) | |
projected_points = projected_points[:, :, :-1] | |
return projected_points | |
def avg_rot(rot): | |
# input [B,...,3,3] --> output [...,3,3] | |
rot = rot.mean(dim=0) | |
U, _, V = torch.svd(rot) | |
rot = U @ V.transpose(-1, -2) | |
return rot | |
def rot9d_to_rotmat(x): | |
"""Convert 9D rotation representation to 3x3 rotation matrix. | |
Based on Levinson et al., "An Analysis of SVD for Deep Rotation Estimation" | |
Input: | |
(B,9) or (B,J*9) Batch of 9D rotation (interpreted as 3x3 est rotmat) | |
Output: | |
(B,3,3) or (B*J,3,3) Batch of corresponding rotation matrices | |
""" | |
x = x.view(-1,3,3) | |
u, _, vh = torch.linalg.svd(x) | |
sig = torch.eye(3).expand(len(x), 3, 3).clone() | |
sig = sig.to(x.device) | |
sig[:, -1, -1] = (u @ vh).det() | |
R = u @ sig @ vh | |
return R | |
""" | |
Deprecated in favor of: rotation_conversions.py | |
Useful geometric operations, e.g. differentiable Rodrigues formula | |
Parts of the code are taken from https://github.com/MandyMo/pytorch_HMR | |
""" | |
def batch_rodrigues(theta): | |
"""Convert axis-angle representation to rotation matrix. | |
Args: | |
theta: size = [B, 3] | |
Returns: | |
Rotation matrix corresponding to the quaternion -- size = [B, 3, 3] | |
""" | |
l1norm = torch.norm(theta + 1e-8, p = 2, dim = 1) | |
angle = torch.unsqueeze(l1norm, -1) | |
normalized = torch.div(theta, angle) | |
angle = angle * 0.5 | |
v_cos = torch.cos(angle) | |
v_sin = torch.sin(angle) | |
quat = torch.cat([v_cos, v_sin * normalized], dim = 1) | |
return quat_to_rotmat(quat) | |
def quat_to_rotmat(quat): | |
"""Convert quaternion coefficients to rotation matrix. | |
Args: | |
quat: size = [B, 4] 4 <===>(w, x, y, z) | |
Returns: | |
Rotation matrix corresponding to the quaternion -- size = [B, 3, 3] | |
""" | |
norm_quat = quat | |
norm_quat = norm_quat/norm_quat.norm(p=2, dim=1, keepdim=True) | |
w, x, y, z = norm_quat[:,0], norm_quat[:,1], norm_quat[:,2], norm_quat[:,3] | |
B = quat.size(0) | |
w2, x2, y2, z2 = w.pow(2), x.pow(2), y.pow(2), z.pow(2) | |
wx, wy, wz = w*x, w*y, w*z | |
xy, xz, yz = x*y, x*z, y*z | |
rotMat = torch.stack([w2 + x2 - y2 - z2, 2*xy - 2*wz, 2*wy + 2*xz, | |
2*wz + 2*xy, w2 - x2 + y2 - z2, 2*yz - 2*wx, | |
2*xz - 2*wy, 2*wx + 2*yz, w2 - x2 - y2 + z2], dim=1).view(B, 3, 3) | |
return rotMat | |
def rot6d_to_rotmat(x): | |
"""Convert 6D rotation representation to 3x3 rotation matrix. | |
Based on Zhou et al., "On the Continuity of Rotation Representations in Neural Networks", CVPR 2019 | |
Input: | |
(B,6) Batch of 6-D rotation representations | |
Output: | |
(B,3,3) Batch of corresponding rotation matrices | |
""" | |
x = x.view(-1,3,2) | |
a1 = x[:, :, 0] | |
a2 = x[:, :, 1] | |
b1 = F.normalize(a1) | |
b2 = F.normalize(a2 - torch.einsum('bi,bi->b', b1, a2).unsqueeze(-1) * b1) | |
b3 = torch.cross(b1, b2) | |
return torch.stack((b1, b2, b3), dim=-1) | |
def rot6d_to_rotmat_hmr2(x: torch.Tensor) -> torch.Tensor: | |
""" | |
Convert 6D rotation representation to 3x3 rotation matrix. | |
Based on Zhou et al., "On the Continuity of Rotation Representations in Neural Networks", CVPR 2019 | |
Args: | |
x (torch.Tensor): (B,6) Batch of 6-D rotation representations. | |
Returns: | |
torch.Tensor: Batch of corresponding rotation matrices with shape (B,3,3). | |
""" | |
x = x.reshape(-1,2,3).permute(0, 2, 1).contiguous() | |
a1 = x[:, :, 0] | |
a2 = x[:, :, 1] | |
b1 = F.normalize(a1) | |
b2 = F.normalize(a2 - torch.einsum('bi,bi->b', b1, a2).unsqueeze(-1) * b1) | |
b3 = torch.cross(b1, b2) | |
return torch.stack((b1, b2, b3), dim=-1) | |
def rotmat_to_rot6d(rotmat): | |
""" Inverse function of the above. | |
Input: | |
(B,3,3) Batch of corresponding rotation matrices | |
Output: | |
(B,6) Batch of 6-D rotation representations | |
""" | |
# rot6d = rotmat[:, :, :2] | |
rot6d = rotmat[...,:2] | |
rot6d = rot6d.reshape(rot6d.size(0), -1) | |
return rot6d | |
def rotation_matrix_to_angle_axis(rotation_matrix): | |
""" | |
This function is borrowed from https://github.com/kornia/kornia | |
Convert 3x4 rotation matrix to Rodrigues vector | |
Args: | |
rotation_matrix (Tensor): rotation matrix. | |
Returns: | |
Tensor: Rodrigues vector transformation. | |
Shape: | |
- Input: :math:`(N, 3, 4)` | |
- Output: :math:`(N, 3)` | |
Example: | |
>>> input = torch.rand(2, 3, 4) # Nx4x4 | |
>>> output = tgm.rotation_matrix_to_angle_axis(input) # Nx3 | |
""" | |
if rotation_matrix.shape[1:] == (3,3): | |
rot_mat = rotation_matrix.reshape(-1, 3, 3) | |
hom = torch.tensor([0, 0, 1], dtype=torch.float32, | |
device=rotation_matrix.device).reshape(1, 3, 1).expand(rot_mat.shape[0], -1, -1) | |
rotation_matrix = torch.cat([rot_mat, hom], dim=-1) | |
quaternion = rotation_matrix_to_quaternion(rotation_matrix) | |
aa = quaternion_to_angle_axis(quaternion) | |
aa[torch.isnan(aa)] = 0.0 | |
return aa | |
def quaternion_to_angle_axis(quaternion: torch.Tensor) -> torch.Tensor: | |
""" | |
This function is borrowed from https://github.com/kornia/kornia | |
Convert quaternion vector to angle axis of rotation. | |
Adapted from ceres C++ library: ceres-solver/include/ceres/rotation.h | |
Args: | |
quaternion (torch.Tensor): tensor with quaternions. | |
Return: | |
torch.Tensor: tensor with angle axis of rotation. | |
Shape: | |
- Input: :math:`(*, 4)` where `*` means, any number of dimensions | |
- Output: :math:`(*, 3)` | |
Example: | |
>>> quaternion = torch.rand(2, 4) # Nx4 | |
>>> angle_axis = tgm.quaternion_to_angle_axis(quaternion) # Nx3 | |
""" | |
if not torch.is_tensor(quaternion): | |
raise TypeError("Input type is not a torch.Tensor. Got {}".format( | |
type(quaternion))) | |
if not quaternion.shape[-1] == 4: | |
raise ValueError("Input must be a tensor of shape Nx4 or 4. Got {}" | |
.format(quaternion.shape)) | |
# unpack input and compute conversion | |
q1: torch.Tensor = quaternion[..., 1] | |
q2: torch.Tensor = quaternion[..., 2] | |
q3: torch.Tensor = quaternion[..., 3] | |
sin_squared_theta: torch.Tensor = q1 * q1 + q2 * q2 + q3 * q3 | |
sin_theta: torch.Tensor = torch.sqrt(sin_squared_theta) | |
cos_theta: torch.Tensor = quaternion[..., 0] | |
two_theta: torch.Tensor = 2.0 * torch.where( | |
cos_theta < 0.0, | |
torch.atan2(-sin_theta, -cos_theta), | |
torch.atan2(sin_theta, cos_theta)) | |
k_pos: torch.Tensor = two_theta / sin_theta | |
k_neg: torch.Tensor = 2.0 * torch.ones_like(sin_theta) | |
k: torch.Tensor = torch.where(sin_squared_theta > 0.0, k_pos, k_neg) | |
angle_axis: torch.Tensor = torch.zeros_like(quaternion)[..., :3] | |
angle_axis[..., 0] += q1 * k | |
angle_axis[..., 1] += q2 * k | |
angle_axis[..., 2] += q3 * k | |
return angle_axis | |
def rotation_matrix_to_quaternion(rotation_matrix, eps=1e-6): | |
""" | |
This function is borrowed from https://github.com/kornia/kornia | |
Convert 3x4 rotation matrix to 4d quaternion vector | |
This algorithm is based on algorithm described in | |
https://github.com/KieranWynn/pyquaternion/blob/master/pyquaternion/quaternion.py#L201 | |
Args: | |
rotation_matrix (Tensor): the rotation matrix to convert. | |
Return: | |
Tensor: the rotation in quaternion | |
Shape: | |
- Input: :math:`(N, 3, 4)` | |
- Output: :math:`(N, 4)` | |
Example: | |
>>> input = torch.rand(4, 3, 4) # Nx3x4 | |
>>> output = tgm.rotation_matrix_to_quaternion(input) # Nx4 | |
""" | |
if not torch.is_tensor(rotation_matrix): | |
raise TypeError("Input type is not a torch.Tensor. Got {}".format( | |
type(rotation_matrix))) | |
if len(rotation_matrix.shape) > 3: | |
raise ValueError( | |
"Input size must be a three dimensional tensor. Got {}".format( | |
rotation_matrix.shape)) | |
if not rotation_matrix.shape[-2:] == (3, 4): | |
raise ValueError( | |
"Input size must be a N x 3 x 4 tensor. Got {}".format( | |
rotation_matrix.shape)) | |
rmat_t = torch.transpose(rotation_matrix, 1, 2) | |
mask_d2 = rmat_t[:, 2, 2] < eps | |
mask_d0_d1 = rmat_t[:, 0, 0] > rmat_t[:, 1, 1] | |
mask_d0_nd1 = rmat_t[:, 0, 0] < -rmat_t[:, 1, 1] | |
t0 = 1 + rmat_t[:, 0, 0] - rmat_t[:, 1, 1] - rmat_t[:, 2, 2] | |
q0 = torch.stack([rmat_t[:, 1, 2] - rmat_t[:, 2, 1], | |
t0, rmat_t[:, 0, 1] + rmat_t[:, 1, 0], | |
rmat_t[:, 2, 0] + rmat_t[:, 0, 2]], -1) | |
t0_rep = t0.repeat(4, 1).t() | |
t1 = 1 - rmat_t[:, 0, 0] + rmat_t[:, 1, 1] - rmat_t[:, 2, 2] | |
q1 = torch.stack([rmat_t[:, 2, 0] - rmat_t[:, 0, 2], | |
rmat_t[:, 0, 1] + rmat_t[:, 1, 0], | |
t1, rmat_t[:, 1, 2] + rmat_t[:, 2, 1]], -1) | |
t1_rep = t1.repeat(4, 1).t() | |
t2 = 1 - rmat_t[:, 0, 0] - rmat_t[:, 1, 1] + rmat_t[:, 2, 2] | |
q2 = torch.stack([rmat_t[:, 0, 1] - rmat_t[:, 1, 0], | |
rmat_t[:, 2, 0] + rmat_t[:, 0, 2], | |
rmat_t[:, 1, 2] + rmat_t[:, 2, 1], t2], -1) | |
t2_rep = t2.repeat(4, 1).t() | |
t3 = 1 + rmat_t[:, 0, 0] + rmat_t[:, 1, 1] + rmat_t[:, 2, 2] | |
q3 = torch.stack([t3, rmat_t[:, 1, 2] - rmat_t[:, 2, 1], | |
rmat_t[:, 2, 0] - rmat_t[:, 0, 2], | |
rmat_t[:, 0, 1] - rmat_t[:, 1, 0]], -1) | |
t3_rep = t3.repeat(4, 1).t() | |
mask_c0 = mask_d2 * mask_d0_d1 | |
mask_c1 = mask_d2 * ~mask_d0_d1 | |
mask_c2 = ~mask_d2 * mask_d0_nd1 | |
mask_c3 = ~mask_d2 * ~mask_d0_nd1 | |
mask_c0 = mask_c0.view(-1, 1).type_as(q0) | |
mask_c1 = mask_c1.view(-1, 1).type_as(q1) | |
mask_c2 = mask_c2.view(-1, 1).type_as(q2) | |
mask_c3 = mask_c3.view(-1, 1).type_as(q3) | |
q = q0 * mask_c0 + q1 * mask_c1 + q2 * mask_c2 + q3 * mask_c3 | |
q /= torch.sqrt(t0_rep * mask_c0 + t1_rep * mask_c1 + # noqa | |
t2_rep * mask_c2 + t3_rep * mask_c3) # noqa | |
q *= 0.5 | |
return q | |
def estimate_translation_np(S, joints_2d, joints_conf, focal_length=5000., img_size=224.): | |
""" | |
This function is borrowed from https://github.com/nkolot/SPIN/utils/geometry.py | |
Find camera translation that brings 3D joints S closest to 2D the corresponding joints_2d. | |
Input: | |
S: (25, 3) 3D joint locations | |
joints: (25, 3) 2D joint locations and confidence | |
Returns: | |
(3,) camera translation vector | |
""" | |
num_joints = S.shape[0] | |
# focal length | |
f = np.array([focal_length,focal_length]) | |
# optical center | |
center = np.array([img_size/2., img_size/2.]) | |
# transformations | |
Z = np.reshape(np.tile(S[:,2],(2,1)).T,-1) | |
XY = np.reshape(S[:,0:2],-1) | |
O = np.tile(center,num_joints) | |
F = np.tile(f,num_joints) | |
weight2 = np.reshape(np.tile(np.sqrt(joints_conf),(2,1)).T,-1) | |
# least squares | |
Q = np.array([F*np.tile(np.array([1,0]),num_joints), F*np.tile(np.array([0,1]),num_joints), O-np.reshape(joints_2d,-1)]).T | |
c = (np.reshape(joints_2d,-1)-O)*Z - F*XY | |
# weighted least squares | |
W = np.diagflat(weight2) | |
Q = np.dot(W,Q) | |
c = np.dot(W,c) | |
# square matrix | |
A = np.dot(Q.T,Q) | |
b = np.dot(Q.T,c) | |
# solution | |
trans = np.linalg.solve(A, b) | |
return trans | |
def estimate_translation(S, joints_2d, focal_length=5000., img_size=224.): | |
"""Find camera translation that brings 3D joints S closest to 2D the corresponding joints_2d. | |
Input: | |
S: (B, 49, 3) 3D joint locations | |
joints: (B, 49, 3) 2D joint locations and confidence | |
Returns: | |
(B, 3) camera translation vectors | |
""" | |
device = S.device | |
# Use only joints 25:49 (GT joints) | |
S = S[:, -24:, :3].cpu().numpy() | |
joints_2d = joints_2d[:, -24:, :].cpu().numpy() | |
joints_conf = joints_2d[:, :, -1] | |
joints_2d = joints_2d[:, :, :-1] | |
trans = np.zeros((S.shape[0], 3), dtype=np.float32) | |
# Find the translation for each example in the batch | |
for i in range(S.shape[0]): | |
S_i = S[i] | |
joints_i = joints_2d[i] | |
conf_i = joints_conf[i] | |
trans[i] = estimate_translation_np(S_i, joints_i, conf_i, focal_length=focal_length, img_size=img_size) | |
return torch.from_numpy(trans).to(device) | |