Spaces:
Running
Running
orionweller
commited on
Commit
·
f11b057
1
Parent(s):
5250137
working
Browse files- .github/workflows/update_leaderboard.yml +40 -0
- .gitignore +2 -1
- EXTERNAL_MODEL_RESULTS.json +0 -0
- all_data_tasks.pkl +3 -0
- app.py +47 -383
- boards_data.pkl +3 -0
- refresh.py +415 -0
- test.txt +0 -1
.github/workflows/update_leaderboard.yml
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This workflow will install Python dependencies, run tests and lint with a single version of Python
|
2 |
+
# For more information see: https://help.github.com/actions/language-and-framework-guides/using-python-with-github-actions
|
3 |
+
|
4 |
+
name: update_leaderboard_daily
|
5 |
+
|
6 |
+
on:
|
7 |
+
schedule:
|
8 |
+
- cron: '30 2 * * *'
|
9 |
+
push:
|
10 |
+
branches: [ main ]
|
11 |
+
|
12 |
+
jobs:
|
13 |
+
build:
|
14 |
+
|
15 |
+
runs-on: ubuntu-latest
|
16 |
+
|
17 |
+
steps:
|
18 |
+
- uses: actions/checkout@v3
|
19 |
+
with:
|
20 |
+
fetch-depth: 0
|
21 |
+
lfs: true
|
22 |
+
- name: Set up Python 3.9
|
23 |
+
uses: actions/setup-python@v4
|
24 |
+
with:
|
25 |
+
python-version: 3.9
|
26 |
+
- name: Install requirements
|
27 |
+
run: |
|
28 |
+
pip install -r requirements.txt
|
29 |
+
- name: Run leaderboard updating code
|
30 |
+
run: |
|
31 |
+
python refresh.py
|
32 |
+
- name: Commit updates
|
33 |
+
uses: stefanzweifel/git-auto-commit-action@v4
|
34 |
+
with:
|
35 |
+
commit_message: Automated Leaderboard Update
|
36 |
+
file_pattern: '*.pkl *.json'
|
37 |
+
- name: Push to hub
|
38 |
+
env:
|
39 |
+
HF_TOKEN: ${{ secrets.HF_TOKEN }}
|
40 |
+
run: git push https://mteb:[email protected]/spaces/mteb/leaderboard-in-progress main
|
.gitignore
CHANGED
@@ -1,2 +1,3 @@
|
|
1 |
*.pyc
|
2 |
-
model_infos.json
|
|
|
|
1 |
*.pyc
|
2 |
+
model_infos.json
|
3 |
+
space
|
EXTERNAL_MODEL_RESULTS.json
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
all_data_tasks.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:05e5d083e86af0a00fe10e97c8d55d4c06280fde7396ff172158d69fa216cb50
|
3 |
+
size 531551
|
app.py
CHANGED
@@ -1,58 +1,19 @@
|
|
1 |
from functools import reduce
|
2 |
import json
|
|
|
3 |
import os
|
4 |
import re
|
5 |
|
6 |
-
from datasets import load_dataset
|
7 |
import gradio as gr
|
8 |
-
from huggingface_hub import hf_hub_download
|
9 |
-
from huggingface_hub.repocard import metadata_load
|
10 |
import pandas as pd
|
11 |
from tqdm.autonotebook import tqdm
|
12 |
|
13 |
from utils.model_size import get_model_parameters_memory
|
14 |
-
from
|
|
|
|
|
15 |
|
16 |
-
TASKS_CONFIG = LEADERBOARD_CONFIG["tasks"]
|
17 |
-
BOARDS_CONFIG = LEADERBOARD_CONFIG["boards"]
|
18 |
|
19 |
-
TASKS = list(TASKS_CONFIG.keys())
|
20 |
-
PRETTY_NAMES = {
|
21 |
-
"InstructionRetrieval": "Retrieval w/Instructions",
|
22 |
-
"PairClassification": "Pair Classification",
|
23 |
-
"BitextMining": "Bitext Mining",
|
24 |
-
}
|
25 |
-
|
26 |
-
TASK_TO_METRIC = {k: [v["metric"]] for k, v in TASKS_CONFIG.items()}
|
27 |
-
# Add legacy metric names
|
28 |
-
TASK_TO_METRIC["STS"].append("cos_sim_spearman")
|
29 |
-
TASK_TO_METRIC["STS"].append("cosine_spearman")
|
30 |
-
TASK_TO_METRIC["Summarization"].append("cos_sim_spearman")
|
31 |
-
TASK_TO_METRIC["Summarization"].append("cosine_spearman")
|
32 |
-
TASK_TO_METRIC["PairClassification"].append("cos_sim_ap")
|
33 |
-
TASK_TO_METRIC["PairClassification"].append("cosine_ap")
|
34 |
-
|
35 |
-
|
36 |
-
def make_clickable_model(model_name, link=None):
|
37 |
-
if link is None:
|
38 |
-
link = "https://huggingface.co/" + model_name
|
39 |
-
# Remove user from model name
|
40 |
-
return (
|
41 |
-
f'<a target="_blank" style="text-decoration: underline" href="{link}">{model_name.split("/")[-1]}</a>'
|
42 |
-
)
|
43 |
-
|
44 |
-
EXTERNAL_MODELS = {k for k,v in MODEL_META["model_meta"].items() if v.get("is_external", False)}
|
45 |
-
EXTERNAL_MODEL_TO_LINK = {k: v["link"] for k,v in MODEL_META["model_meta"].items() if v.get("link", False)}
|
46 |
-
EXTERNAL_MODEL_TO_DIM = {k: v["dim"] for k,v in MODEL_META["model_meta"].items() if v.get("dim", False)}
|
47 |
-
EXTERNAL_MODEL_TO_SEQLEN = {k: v["seq_len"] for k,v in MODEL_META["model_meta"].items() if v.get("seq_len", False)}
|
48 |
-
EXTERNAL_MODEL_TO_SIZE = {k: v["size"] for k,v in MODEL_META["model_meta"].items() if v.get("size", False)}
|
49 |
-
PROPRIETARY_MODELS = {k for k,v in MODEL_META["model_meta"].items() if v.get("is_proprietary", False)}
|
50 |
-
TASK_DESCRIPTIONS = {k: v["task_description"] for k,v in TASKS_CONFIG.items()}
|
51 |
-
TASK_DESCRIPTIONS["Overall"] = "Overall performance across MTEB tasks."
|
52 |
-
SENTENCE_TRANSFORMERS_COMPATIBLE_MODELS = {k for k,v in MODEL_META["model_meta"].items() if v.get("is_sentence_transformers_compatible", False)}
|
53 |
-
MODELS_TO_SKIP = MODEL_META["models_to_skip"]
|
54 |
-
CROSS_ENCODERS = MODEL_META["cross_encoders"]
|
55 |
-
BI_ENCODERS = [k for k, _ in MODEL_META["model_meta"].items() if k not in CROSS_ENCODERS + ["bm25"]]
|
56 |
|
57 |
PROPRIETARY_MODELS = {
|
58 |
make_clickable_model(model, link=EXTERNAL_MODEL_TO_LINK.get(model, f"https://huggingface.co/spaces/{REPO_ID}"))
|
@@ -72,104 +33,6 @@ BI_ENCODERS = {
|
|
72 |
}
|
73 |
|
74 |
|
75 |
-
TASK_TO_TASK_TYPE = {task_category: [] for task_category in TASKS}
|
76 |
-
for board_config in BOARDS_CONFIG.values():
|
77 |
-
for task_category, task_list in board_config["tasks"].items():
|
78 |
-
TASK_TO_TASK_TYPE[task_category].extend(task_list)
|
79 |
-
|
80 |
-
def add_lang(examples):
|
81 |
-
if not(examples["eval_language"]):
|
82 |
-
examples["mteb_dataset_name_with_lang"] = examples["mteb_dataset_name"]
|
83 |
-
else:
|
84 |
-
examples["mteb_dataset_name_with_lang"] = examples["mteb_dataset_name"] + f' ({examples["eval_language"]})'
|
85 |
-
return examples
|
86 |
-
|
87 |
-
def norm(names): return set([name.split(" ")[0] for name in names])
|
88 |
-
|
89 |
-
def add_task(examples):
|
90 |
-
# Could be added to the dataset loading script instead
|
91 |
-
task_name = examples["mteb_dataset_name"]
|
92 |
-
task_type = None
|
93 |
-
for task_category, task_list in TASK_TO_TASK_TYPE.items():
|
94 |
-
if task_name in norm(task_list):
|
95 |
-
task_type = task_category
|
96 |
-
break
|
97 |
-
if task_type is not None:
|
98 |
-
examples["mteb_task"] = task_type
|
99 |
-
else:
|
100 |
-
print("WARNING: Task not found for dataset", examples["mteb_dataset_name"])
|
101 |
-
examples["mteb_task"] = "Unknown"
|
102 |
-
return examples
|
103 |
-
|
104 |
-
def filter_metric_external(x, task, metrics):
|
105 |
-
# This is a hack for the passkey and needle retrieval test, which reports ndcg_at_1 (i.e. accuracy), rather than the ndcg_at_10 that is commonly used for retrieval tasks.
|
106 |
-
if x['mteb_dataset_name'] in ['LEMBNeedleRetrieval', 'LEMBPasskeyRetrieval']:
|
107 |
-
return x["mteb_task"] == task and x['metric'] == 'ndcg_at_1'
|
108 |
-
else:
|
109 |
-
return x["mteb_task"] == task and x["metric"] in metrics
|
110 |
-
|
111 |
-
def filter_metric_fetched(name, metric, expected_metrics):
|
112 |
-
# This is a hack for the passkey and needle retrieval test, which reports ndcg_at_1 (i.e. accuracy), rather than the ndcg_at_10 that is commonly used for retrieval tasks.
|
113 |
-
return metric == 'ndcg_at_1' if name in ['LEMBNeedleRetrieval', 'LEMBPasskeyRetrieval'] else metric in expected_metrics
|
114 |
-
|
115 |
-
if os.path.exists("EXTERNAL_MODEL_RESULTS.json"):
|
116 |
-
with open("EXTERNAL_MODEL_RESULTS.json") as f:
|
117 |
-
EXTERNAL_MODEL_RESULTS = json.load(f)
|
118 |
-
# Update with models not contained
|
119 |
-
models_to_run = []
|
120 |
-
for model in EXTERNAL_MODELS:
|
121 |
-
if model not in EXTERNAL_MODEL_RESULTS:
|
122 |
-
models_to_run.append(model)
|
123 |
-
EXTERNAL_MODEL_RESULTS[model] = {k: {v[0]: []} for k, v in TASK_TO_METRIC.items()}
|
124 |
-
else:
|
125 |
-
EXTERNAL_MODEL_RESULTS = {model: {k: {v[0]: []} for k, v in TASK_TO_METRIC.items()} for model in EXTERNAL_MODELS}
|
126 |
-
models_to_run = EXTERNAL_MODELS
|
127 |
-
|
128 |
-
pbar = tqdm(models_to_run, desc="Fetching external model results")
|
129 |
-
for model in pbar:
|
130 |
-
pbar.set_description(f"Fetching external model results for {model!r}")
|
131 |
-
ds = load_dataset(RESULTS_REPO, model, trust_remote_code=True)
|
132 |
-
# For local debugging:
|
133 |
-
#, download_mode='force_redownload', verification_mode="no_checks")
|
134 |
-
ds = ds.map(add_lang)
|
135 |
-
ds = ds.map(add_task)
|
136 |
-
base_dict = {"Model": make_clickable_model(model, link=EXTERNAL_MODEL_TO_LINK.get(model, f"https://huggingface.co/spaces/{REPO_ID}"))}
|
137 |
-
|
138 |
-
for task, metrics in TASK_TO_METRIC.items():
|
139 |
-
ds_dict = ds.filter(lambda x: filter_metric_external(x, task, metrics))["test"].to_dict()
|
140 |
-
ds_dict = {k: round(v, 2) for k, v in zip(ds_dict["mteb_dataset_name_with_lang"], ds_dict["score"])}
|
141 |
-
# metrics[0] is the main name for this metric; other names in the list are legacy for backward-compat
|
142 |
-
EXTERNAL_MODEL_RESULTS[model][task][metrics[0]].append({**base_dict, **ds_dict})
|
143 |
-
|
144 |
-
# Save & cache EXTERNAL_MODEL_RESULTS
|
145 |
-
with open("EXTERNAL_MODEL_RESULTS.json", "w") as f:
|
146 |
-
json.dump(EXTERNAL_MODEL_RESULTS, f)
|
147 |
-
|
148 |
-
def get_dim_seq_size(model):
|
149 |
-
filenames = [sib.rfilename for sib in model.siblings]
|
150 |
-
dim, seq = "", ""
|
151 |
-
for filename in filenames:
|
152 |
-
if re.match("\d+_Pooling/config.json", filename):
|
153 |
-
st_config_path = hf_hub_download(model.modelId, filename=filename)
|
154 |
-
dim = json.load(open(st_config_path)).get("word_embedding_dimension", "")
|
155 |
-
break
|
156 |
-
for filename in filenames:
|
157 |
-
if re.match("\d+_Dense/config.json", filename):
|
158 |
-
st_config_path = hf_hub_download(model.modelId, filename=filename)
|
159 |
-
dim = json.load(open(st_config_path)).get("out_features", dim)
|
160 |
-
if "config.json" in filenames:
|
161 |
-
config_path = hf_hub_download(model.modelId, filename="config.json")
|
162 |
-
config = json.load(open(config_path))
|
163 |
-
if not dim:
|
164 |
-
dim = config.get("hidden_dim", config.get("hidden_size", config.get("d_model", "")))
|
165 |
-
seq = config.get("n_positions", config.get("max_position_embeddings", config.get("n_ctx", config.get("seq_length", ""))))
|
166 |
-
|
167 |
-
if dim == "" or seq == "":
|
168 |
-
raise Exception(f"Could not find dim or seq for model {model.modelId}")
|
169 |
-
|
170 |
-
# Get model file size without downloading. Parameters in million parameters and memory in GB
|
171 |
-
parameters, memory = get_model_parameters_memory(model)
|
172 |
-
return dim, seq, parameters, memory
|
173 |
|
174 |
def make_datasets_clickable(df):
|
175 |
"""Does not work"""
|
@@ -179,235 +42,7 @@ def make_datasets_clickable(df):
|
|
179 |
columns={f'BornholmBitextMining': '<a target="_blank" style="text-decoration: underline" href="{link}">BornholmBitextMining</a>',})
|
180 |
return df
|
181 |
|
182 |
-
def add_rank(df):
|
183 |
-
cols_to_rank = [col for col in df.columns if col not in ["Model", "Model Size (Million Parameters)", "Memory Usage (GB, fp32)", "Embedding Dimensions", "Max Tokens"]]
|
184 |
-
if len(cols_to_rank) == 1:
|
185 |
-
df.sort_values(cols_to_rank[0], ascending=False, inplace=True)
|
186 |
-
else:
|
187 |
-
df.insert(len(df.columns) - len(cols_to_rank), "Average", df[cols_to_rank].mean(axis=1, skipna=False))
|
188 |
-
df.sort_values("Average", ascending=False, inplace=True)
|
189 |
-
df.insert(0, "Rank", list(range(1, len(df) + 1)))
|
190 |
-
df = df.round(2)
|
191 |
-
# Fill NaN after averaging
|
192 |
-
df.fillna("", inplace=True)
|
193 |
-
return df
|
194 |
|
195 |
-
model_infos_path = "model_infos.json"
|
196 |
-
MODEL_INFOS = {}
|
197 |
-
if os.path.exists(model_infos_path):
|
198 |
-
with open(model_infos_path) as f:
|
199 |
-
MODEL_INFOS = json.load(f)
|
200 |
-
|
201 |
-
def get_mteb_data(tasks=["Clustering"], langs=[], datasets=[], fillna=True, add_emb_dim=True, task_to_metric=TASK_TO_METRIC, rank=True, refresh=True):
|
202 |
-
global MODEL_INFOS
|
203 |
-
api = API
|
204 |
-
models = api.list_models(filter="mteb")
|
205 |
-
# Legacy names changes; Also fetch the old results & merge later
|
206 |
-
if ('MLSUMClusteringP2P (fr)' in datasets):
|
207 |
-
datasets.append('MLSUMClusteringP2P')
|
208 |
-
if ('MLSUMClusteringS2S (fr)' in datasets):
|
209 |
-
datasets.append('MLSUMClusteringS2S')
|
210 |
-
# Initialize list to models that we cannot fetch metadata from
|
211 |
-
df_list = []
|
212 |
-
for model in EXTERNAL_MODEL_RESULTS:
|
213 |
-
results_list = []
|
214 |
-
for task in tasks:
|
215 |
-
# Not all models have InstructionRetrieval, other new tasks
|
216 |
-
if task not in EXTERNAL_MODEL_RESULTS[model]: continue
|
217 |
-
results_list += EXTERNAL_MODEL_RESULTS[model][task][task_to_metric[task][0]]
|
218 |
-
|
219 |
-
if len(datasets) > 0:
|
220 |
-
res = {k: v for d in results_list for k, v in d.items() if (k == "Model") or any([x in k for x in datasets])}
|
221 |
-
elif langs:
|
222 |
-
# Would be cleaner to rely on an extra language column instead
|
223 |
-
langs_format = [f"({lang})" for lang in langs]
|
224 |
-
res = {k: v for d in results_list for k, v in d.items() if any([k.split(" ")[-1] in (k, x) for x in langs_format])}
|
225 |
-
else:
|
226 |
-
res = {k: v for d in results_list for k, v in d.items()}
|
227 |
-
# Model & at least one result
|
228 |
-
if len(res) > 1:
|
229 |
-
if add_emb_dim:
|
230 |
-
res["Model Size (Million Parameters)"] = EXTERNAL_MODEL_TO_SIZE.get(model, "")
|
231 |
-
res["Memory Usage (GB, fp32)"] = round(res["Model Size (Million Parameters)"] * 1e6 * 4 / 1024**3, 2) if res["Model Size (Million Parameters)"] != "" else ""
|
232 |
-
res["Embedding Dimensions"] = EXTERNAL_MODEL_TO_DIM.get(model, "")
|
233 |
-
res["Max Tokens"] = EXTERNAL_MODEL_TO_SEQLEN.get(model, "")
|
234 |
-
df_list.append(res)
|
235 |
-
|
236 |
-
for model in models:
|
237 |
-
if model.modelId in MODELS_TO_SKIP: continue
|
238 |
-
print("MODEL", model.modelId)
|
239 |
-
if model.modelId not in MODEL_INFOS or refresh:
|
240 |
-
readme_path = hf_hub_download(model.modelId, filename="README.md")
|
241 |
-
meta = metadata_load(readme_path)
|
242 |
-
MODEL_INFOS[model.modelId] = {
|
243 |
-
"metadata": meta
|
244 |
-
}
|
245 |
-
meta = MODEL_INFOS[model.modelId]["metadata"]
|
246 |
-
if "model-index" not in meta:
|
247 |
-
continue
|
248 |
-
# meta['model-index'][0]["results"] is list of elements like:
|
249 |
-
# {
|
250 |
-
# "task": {"type": "Classification"},
|
251 |
-
# "dataset": {
|
252 |
-
# "type": "mteb/amazon_massive_intent",
|
253 |
-
# "name": "MTEB MassiveIntentClassification (nb)",
|
254 |
-
# "config": "nb",
|
255 |
-
# "split": "test",
|
256 |
-
# },
|
257 |
-
# "metrics": [
|
258 |
-
# {"type": "accuracy", "value": 39.81506388702084},
|
259 |
-
# {"type": "f1", "value": 38.809586587791664},
|
260 |
-
# ],
|
261 |
-
# },
|
262 |
-
# Use "get" instead of dict indexing to skip incompat metadata instead of erroring out
|
263 |
-
if len(datasets) > 0:
|
264 |
-
task_results = [sub_res for sub_res in meta["model-index"][0]["results"] if (sub_res.get("task", {}).get("type", "") in tasks) and any([x in sub_res.get("dataset", {}).get("name", "") for x in datasets])]
|
265 |
-
elif langs:
|
266 |
-
task_results = [sub_res for sub_res in meta["model-index"][0]["results"] if (sub_res.get("task", {}).get("type", "") in tasks) and (sub_res.get("dataset", {}).get("config", "default") in ("default", *langs))]
|
267 |
-
else:
|
268 |
-
task_results = [sub_res for sub_res in meta["model-index"][0]["results"] if (sub_res.get("task", {}).get("type", "") in tasks)]
|
269 |
-
try:
|
270 |
-
out = [{res["dataset"]["name"].replace("MTEB ", ""): [round(score["value"], 2) for score in res["metrics"] if filter_metric_fetched(res["dataset"]["name"].replace("MTEB ", ""), score["type"], task_to_metric.get(res["task"]["type"]))][0]} for res in task_results]
|
271 |
-
except Exception as e:
|
272 |
-
print("ERROR", model.modelId, e)
|
273 |
-
continue
|
274 |
-
out = {k: v for d in out for k, v in d.items()}
|
275 |
-
out["Model"] = make_clickable_model(model.modelId)
|
276 |
-
# Model & at least one result
|
277 |
-
if len(out) > 1:
|
278 |
-
if add_emb_dim:
|
279 |
-
# The except clause triggers on gated repos, we can use external metadata for those
|
280 |
-
try:
|
281 |
-
if "dim_seq_size" not in MODEL_INFOS[model.modelId] or refresh:
|
282 |
-
MODEL_INFOS[model.modelId]["dim_seq_size"] = list(get_dim_seq_size(model))
|
283 |
-
except:
|
284 |
-
name_without_org = model.modelId.split("/")[-1]
|
285 |
-
# EXTERNAL_MODEL_TO_SIZE[name_without_org] refers to millions of parameters, so for memory usage
|
286 |
-
# we multiply by 1e6 to get just the number of parameters, then by 4 to get the number of bytes
|
287 |
-
# given fp32 precision (4 bytes per float), then divide by 1024**3 to get the number of GB
|
288 |
-
MODEL_INFOS[model.modelId]["dim_seq_size"] = (
|
289 |
-
EXTERNAL_MODEL_TO_DIM.get(name_without_org, ""),
|
290 |
-
EXTERNAL_MODEL_TO_SEQLEN.get(name_without_org, ""),
|
291 |
-
EXTERNAL_MODEL_TO_SIZE.get(name_without_org, ""),
|
292 |
-
round(EXTERNAL_MODEL_TO_SIZE[name_without_org] * 1e6 * 4 / 1024**3, 2) if name_without_org in EXTERNAL_MODEL_TO_SIZE else "",
|
293 |
-
)
|
294 |
-
out["Embedding Dimensions"], out["Max Tokens"], out["Model Size (Million Parameters)"], out["Memory Usage (GB, fp32)"] = tuple(MODEL_INFOS[model.modelId]["dim_seq_size"])
|
295 |
-
df_list.append(out)
|
296 |
-
if model.library_name == "sentence-transformers" or "sentence-transformers" in model.tags or "modules.json" in {file.rfilename for file in model.siblings}:
|
297 |
-
SENTENCE_TRANSFORMERS_COMPATIBLE_MODELS.add(out["Model"])
|
298 |
-
|
299 |
-
# Save & cache MODEL_INFOS
|
300 |
-
with open("model_infos.json", "w") as f:
|
301 |
-
json.dump(MODEL_INFOS, f)
|
302 |
-
|
303 |
-
df = pd.DataFrame(df_list)
|
304 |
-
# If there are any models that are the same, merge them
|
305 |
-
# E.g. if out["Model"] has the same value in two places, merge & take whichever one is not NaN else just take the first one
|
306 |
-
df = df.groupby("Model", as_index=False).first()
|
307 |
-
# Put 'Model' column first
|
308 |
-
cols = sorted(list(df.columns))
|
309 |
-
base_columns = ["Model", "Model Size (Million Parameters)", "Memory Usage (GB, fp32)", "Embedding Dimensions", "Max Tokens"]
|
310 |
-
if len(datasets) > 0:
|
311 |
-
# Update legacy column names to be merged with newer ones
|
312 |
-
# Update 'MLSUMClusteringP2P (fr)' with values from 'MLSUMClusteringP2P'
|
313 |
-
if ('MLSUMClusteringP2P (fr)' in datasets) and ('MLSUMClusteringP2P' in cols):
|
314 |
-
df['MLSUMClusteringP2P (fr)'] = df['MLSUMClusteringP2P (fr)'].fillna(df['MLSUMClusteringP2P'])
|
315 |
-
datasets.remove('MLSUMClusteringP2P')
|
316 |
-
if ('MLSUMClusteringS2S (fr)' in datasets) and ('MLSUMClusteringS2S' in cols):
|
317 |
-
df['MLSUMClusteringS2S (fr)'] = df['MLSUMClusteringS2S (fr)'].fillna(df['MLSUMClusteringS2S'])
|
318 |
-
datasets.remove('MLSUMClusteringS2S')
|
319 |
-
# Filter invalid columns
|
320 |
-
cols = [col for col in cols if col in base_columns + datasets]
|
321 |
-
i = 0
|
322 |
-
for column in base_columns:
|
323 |
-
if column in cols:
|
324 |
-
cols.insert(i, cols.pop(cols.index(column)))
|
325 |
-
i += 1
|
326 |
-
df = df[cols]
|
327 |
-
if rank:
|
328 |
-
df = add_rank(df)
|
329 |
-
if fillna:
|
330 |
-
df.fillna("", inplace=True)
|
331 |
-
return df
|
332 |
-
|
333 |
-
# Get dict with a task list for each task category
|
334 |
-
# E.g. {"Classification": ["AmazonMassiveIntentClassification (en)", ...], "PairClassification": ["SprintDuplicateQuestions", ...]}
|
335 |
-
def get_mteb_average(task_dict: dict, refresh=True):
|
336 |
-
all_tasks = reduce(lambda x, y: x + y, task_dict.values())
|
337 |
-
DATA_OVERALL = get_mteb_data(
|
338 |
-
tasks=list(task_dict.keys()),
|
339 |
-
datasets=all_tasks,
|
340 |
-
fillna=False,
|
341 |
-
add_emb_dim=True,
|
342 |
-
rank=False,
|
343 |
-
refresh=refresh
|
344 |
-
)
|
345 |
-
# Debugging:
|
346 |
-
# DATA_OVERALL.to_csv("overall.csv")
|
347 |
-
|
348 |
-
DATA_OVERALL.insert(1, f"Average ({len(all_tasks)} datasets)", DATA_OVERALL[all_tasks].mean(axis=1, skipna=False))
|
349 |
-
for i, (task_category, task_category_list) in enumerate(task_dict.items()):
|
350 |
-
DATA_OVERALL.insert(i+2, f"{task_category} Average ({len(task_category_list)} datasets)", DATA_OVERALL[task_category_list].mean(axis=1, skipna=False))
|
351 |
-
DATA_OVERALL.sort_values(f"Average ({len(all_tasks)} datasets)", ascending=False, inplace=True)
|
352 |
-
# Start ranking from 1
|
353 |
-
DATA_OVERALL.insert(0, "Rank", list(range(1, len(DATA_OVERALL) + 1)))
|
354 |
-
|
355 |
-
DATA_OVERALL = DATA_OVERALL.round(2)
|
356 |
-
|
357 |
-
DATA_TASKS = {}
|
358 |
-
for task_category, task_category_list in task_dict.items():
|
359 |
-
DATA_TASKS[task_category] = add_rank(DATA_OVERALL[["Model", "Model Size (Million Parameters)", "Memory Usage (GB, fp32)"] + task_category_list])
|
360 |
-
DATA_TASKS[task_category] = DATA_TASKS[task_category][DATA_TASKS[task_category].iloc[:, 4:].ne("").any(axis=1)]
|
361 |
-
|
362 |
-
# Fill NaN after averaging
|
363 |
-
DATA_OVERALL.fillna("", inplace=True)
|
364 |
-
|
365 |
-
data_overall_rows = ["Rank", "Model", "Model Size (Million Parameters)", "Memory Usage (GB, fp32)", "Embedding Dimensions", "Max Tokens", f"Average ({len(all_tasks)} datasets)"]
|
366 |
-
for task_category, task_category_list in task_dict.items():
|
367 |
-
data_overall_rows.append(f"{task_category} Average ({len(task_category_list)} datasets)")
|
368 |
-
|
369 |
-
DATA_OVERALL = DATA_OVERALL[data_overall_rows]
|
370 |
-
DATA_OVERALL = DATA_OVERALL[DATA_OVERALL.iloc[:, 5:].ne("").any(axis=1)]
|
371 |
-
|
372 |
-
return DATA_OVERALL, DATA_TASKS
|
373 |
-
|
374 |
-
boards_data = {}
|
375 |
-
all_data_tasks = []
|
376 |
-
for board, board_config in BOARDS_CONFIG.items():
|
377 |
-
boards_data[board] = {
|
378 |
-
"data_overall": None,
|
379 |
-
"data_tasks": {}
|
380 |
-
}
|
381 |
-
if board_config["has_overall"]:
|
382 |
-
data_overall, data_tasks = get_mteb_average(board_config["tasks"], refresh=False)
|
383 |
-
boards_data[board]["data_overall"] = data_overall
|
384 |
-
boards_data[board]["data_tasks"] = data_tasks
|
385 |
-
all_data_tasks.extend(data_tasks.values())
|
386 |
-
else:
|
387 |
-
for task_category, task_category_list in board_config["tasks"].items():
|
388 |
-
data_task_category = get_mteb_data(tasks=[task_category], datasets=task_category_list, refresh=False)
|
389 |
-
data_task_category.drop(columns=["Embedding Dimensions", "Max Tokens"], inplace=True)
|
390 |
-
boards_data[board]["data_tasks"][task_category] = data_task_category
|
391 |
-
all_data_tasks.append(data_task_category)
|
392 |
-
|
393 |
-
# Exact, add all non-nan integer values for every dataset
|
394 |
-
NUM_SCORES = 0
|
395 |
-
DATASETS = []
|
396 |
-
MODELS = []
|
397 |
-
# LANGUAGES = []
|
398 |
-
for d in all_data_tasks:
|
399 |
-
# NUM_SCORES += d.iloc[:, 1:].apply(lambda x: sum([1 for y in x if isinstance(y, float) and not np.isnan(y)]), axis=1).sum()
|
400 |
-
cols_to_ignore = 4 if "Average" in d.columns else 3
|
401 |
-
# Count number of scores including only non-nan floats & excluding the rank column
|
402 |
-
NUM_SCORES += d.iloc[:, cols_to_ignore:].notna().sum().sum()
|
403 |
-
# Exclude rank & model name column (first two); Do not count different language versions as different datasets
|
404 |
-
DATASETS += [i.split(" ")[0] for i in d.columns[cols_to_ignore:]]
|
405 |
-
# LANGUAGES += [i.split(" ")[-1] for i in d.columns[cols_to_ignore:]]
|
406 |
-
MODELS += d["Model"].tolist()
|
407 |
-
|
408 |
-
NUM_DATASETS = len(set(DATASETS))
|
409 |
-
# NUM_LANGUAGES = len(set(LANGUAGES))
|
410 |
-
NUM_MODELS = len(set(MODELS))
|
411 |
|
412 |
# 1. Force headers to wrap
|
413 |
# 2. Force model column (maximum) width
|
@@ -438,20 +73,49 @@ Each inner tab can have the following keys:
|
|
438 |
- description: The description of the leaderboard
|
439 |
- credits: [optional] The credits for the leaderboard
|
440 |
- data: The data for the leaderboard
|
441 |
-
- refresh: The function to refresh the leaderboard
|
442 |
"""
|
443 |
|
444 |
-
|
445 |
-
|
446 |
-
|
447 |
-
|
448 |
-
|
449 |
-
|
|
|
|
|
|
|
|
|
|
|
450 |
|
451 |
|
452 |
-
|
453 |
-
|
|
|
|
|
454 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
455 |
|
456 |
data = {
|
457 |
"Overall": {"metric": "Various, refer to task tabs", "data": []}
|
@@ -480,7 +144,7 @@ for board, board_config in BOARDS_CONFIG.items():
|
|
480 |
"language_long": board_config["language_long"],
|
481 |
"description": f"**Overall MTEB {overall_pretty_name}** 🔮{board_icon}",
|
482 |
"data": boards_data[board]["data_overall"],
|
483 |
-
"refresh": get_refresh_overall_function(board_config["tasks"]),
|
484 |
"credits": credits,
|
485 |
"metric": metric,
|
486 |
})
|
@@ -493,7 +157,7 @@ for board, board_config in BOARDS_CONFIG.items():
|
|
493 |
"language_long": board_config["language_long"],
|
494 |
"description": f"**{task_category} {board_pretty_name}** {task_icon}{board_icon}",
|
495 |
"data": boards_data[board]["data_tasks"][task_category],
|
496 |
-
"refresh": get_refresh_function(task_category, task_category_list),
|
497 |
"credits": credits,
|
498 |
"metric": metric,
|
499 |
})
|
@@ -672,9 +336,9 @@ with gr.Blocks(css=css) as block:
|
|
672 |
full_dataframe = gr.Dataframe(item["data"], datatype=datatype, type="pandas", visible=False)
|
673 |
full_dataframes.append(full_dataframe)
|
674 |
|
675 |
-
with gr.Row():
|
676 |
-
|
677 |
-
|
678 |
|
679 |
gr.Markdown(f"""
|
680 |
- **Total Datasets**: {NUM_DATASETS}
|
|
|
1 |
from functools import reduce
|
2 |
import json
|
3 |
+
import pickle
|
4 |
import os
|
5 |
import re
|
6 |
|
|
|
7 |
import gradio as gr
|
|
|
|
|
8 |
import pandas as pd
|
9 |
from tqdm.autonotebook import tqdm
|
10 |
|
11 |
from utils.model_size import get_model_parameters_memory
|
12 |
+
from refresh import TASK_TO_METRIC, TASKS, PRETTY_NAMES, TASKS_CONFIG, BOARDS_CONFIG
|
13 |
+
from envs import REPO_ID
|
14 |
+
from refresh import PROPRIETARY_MODELS, SENTENCE_TRANSFORMERS_COMPATIBLE_MODELS, CROSS_ENCODERS, BI_ENCODERS, TASK_DESCRIPTIONS, EXTERNAL_MODEL_TO_LINK, make_clickable_model
|
15 |
|
|
|
|
|
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
PROPRIETARY_MODELS = {
|
19 |
make_clickable_model(model, link=EXTERNAL_MODEL_TO_LINK.get(model, f"https://huggingface.co/spaces/{REPO_ID}"))
|
|
|
33 |
}
|
34 |
|
35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
def make_datasets_clickable(df):
|
38 |
"""Does not work"""
|
|
|
42 |
columns={f'BornholmBitextMining': '<a target="_blank" style="text-decoration: underline" href="{link}">BornholmBitextMining</a>',})
|
43 |
return df
|
44 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
# 1. Force headers to wrap
|
48 |
# 2. Force model column (maximum) width
|
|
|
73 |
- description: The description of the leaderboard
|
74 |
- credits: [optional] The credits for the leaderboard
|
75 |
- data: The data for the leaderboard
|
|
|
76 |
"""
|
77 |
|
78 |
+
# No more refreshing manually, happens daily
|
79 |
+
# def get_refresh_function(task_category, task_list):
|
80 |
+
# def _refresh():
|
81 |
+
# data_task_category = get_mteb_data(tasks=[task_category], datasets=task_list)
|
82 |
+
# data_task_category.drop(columns=["Embedding Dimensions", "Max Tokens"], inplace=True)
|
83 |
+
# return data_task_category
|
84 |
+
# return _refresh
|
85 |
+
|
86 |
+
|
87 |
+
# def get_refresh_overall_function(tasks):
|
88 |
+
# return lambda: get_mteb_average(tasks)[0]
|
89 |
|
90 |
|
91 |
+
# load in the pre-calculated `all_data_tasks` and `boards_data`
|
92 |
+
print(f"Loading pre-calculated data....")
|
93 |
+
with open("all_data_tasks.pkl", "rb") as f:
|
94 |
+
all_data_tasks = pickle.load(f)
|
95 |
|
96 |
+
with open("boards_data.pkl", "rb") as f:
|
97 |
+
boards_data = pickle.load(f)
|
98 |
+
|
99 |
+
#### Caclulate Metadata
|
100 |
+
# Exact, add all non-nan integer values for every dataset
|
101 |
+
NUM_SCORES = 0
|
102 |
+
DATASETS = []
|
103 |
+
MODELS = []
|
104 |
+
# LANGUAGES = []
|
105 |
+
for d in all_data_tasks:
|
106 |
+
# NUM_SCORES += d.iloc[:, 1:].apply(lambda x: sum([1 for y in x if isinstance(y, float) and not np.isnan(y)]), axis=1).sum()
|
107 |
+
cols_to_ignore = 4 if "Average" in d.columns else 3
|
108 |
+
# Count number of scores including only non-nan floats & excluding the rank column
|
109 |
+
NUM_SCORES += d.iloc[:, cols_to_ignore:].notna().sum().sum()
|
110 |
+
# Exclude rank & model name column (first two); Do not count different language versions as different datasets
|
111 |
+
DATASETS += [i.split(" ")[0] for i in d.columns[cols_to_ignore:]]
|
112 |
+
# LANGUAGES += [i.split(" ")[-1] for i in d.columns[cols_to_ignore:]]
|
113 |
+
MODELS += d["Model"].tolist()
|
114 |
+
|
115 |
+
|
116 |
+
NUM_DATASETS = len(set(DATASETS))
|
117 |
+
# NUM_LANGUAGES = len(set(LANGUAGES))
|
118 |
+
NUM_MODELS = len(set(MODELS))
|
119 |
|
120 |
data = {
|
121 |
"Overall": {"metric": "Various, refer to task tabs", "data": []}
|
|
|
144 |
"language_long": board_config["language_long"],
|
145 |
"description": f"**Overall MTEB {overall_pretty_name}** 🔮{board_icon}",
|
146 |
"data": boards_data[board]["data_overall"],
|
147 |
+
# "refresh": get_refresh_overall_function(board_config["tasks"]),
|
148 |
"credits": credits,
|
149 |
"metric": metric,
|
150 |
})
|
|
|
157 |
"language_long": board_config["language_long"],
|
158 |
"description": f"**{task_category} {board_pretty_name}** {task_icon}{board_icon}",
|
159 |
"data": boards_data[board]["data_tasks"][task_category],
|
160 |
+
# "refresh": get_refresh_function(task_category, task_category_list),
|
161 |
"credits": credits,
|
162 |
"metric": metric,
|
163 |
})
|
|
|
336 |
full_dataframe = gr.Dataframe(item["data"], datatype=datatype, type="pandas", visible=False)
|
337 |
full_dataframes.append(full_dataframe)
|
338 |
|
339 |
+
# with gr.Row():
|
340 |
+
# refresh_button = gr.Button("Refresh")
|
341 |
+
# refresh_button.click(item["refresh"], inputs=None, outputs=dataframe, concurrency_limit=20)
|
342 |
|
343 |
gr.Markdown(f"""
|
344 |
- **Total Datasets**: {NUM_DATASETS}
|
boards_data.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4d838cd56fea0716c0263a4e93f176154071f6877cb4df06f767d423b8f7485b
|
3 |
+
size 680288
|
refresh.py
ADDED
@@ -0,0 +1,415 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from functools import reduce
|
2 |
+
import json
|
3 |
+
import os
|
4 |
+
import pickle
|
5 |
+
import re
|
6 |
+
|
7 |
+
from datasets import load_dataset
|
8 |
+
from huggingface_hub import hf_hub_download
|
9 |
+
from huggingface_hub.repocard import metadata_load
|
10 |
+
import pandas as pd
|
11 |
+
from tqdm.autonotebook import tqdm
|
12 |
+
|
13 |
+
from utils.model_size import get_model_parameters_memory
|
14 |
+
from envs import LEADERBOARD_CONFIG, MODEL_META, REPO_ID, RESULTS_REPO, API
|
15 |
+
|
16 |
+
|
17 |
+
|
18 |
+
TASKS_CONFIG = LEADERBOARD_CONFIG["tasks"]
|
19 |
+
BOARDS_CONFIG = LEADERBOARD_CONFIG["boards"]
|
20 |
+
|
21 |
+
TASKS = list(TASKS_CONFIG.keys())
|
22 |
+
PRETTY_NAMES = {
|
23 |
+
"InstructionRetrieval": "Retrieval w/Instructions",
|
24 |
+
"PairClassification": "Pair Classification",
|
25 |
+
"BitextMining": "Bitext Mining",
|
26 |
+
}
|
27 |
+
|
28 |
+
TASK_TO_METRIC = {k: [v["metric"]] for k, v in TASKS_CONFIG.items()}
|
29 |
+
# Add legacy metric names
|
30 |
+
TASK_TO_METRIC["STS"].append("cos_sim_spearman")
|
31 |
+
TASK_TO_METRIC["STS"].append("cosine_spearman")
|
32 |
+
TASK_TO_METRIC["Summarization"].append("cos_sim_spearman")
|
33 |
+
TASK_TO_METRIC["Summarization"].append("cosine_spearman")
|
34 |
+
TASK_TO_METRIC["PairClassification"].append("cos_sim_ap")
|
35 |
+
TASK_TO_METRIC["PairClassification"].append("cosine_ap")
|
36 |
+
|
37 |
+
|
38 |
+
EXTERNAL_MODELS = {k for k,v in MODEL_META["model_meta"].items() if v.get("is_external", False)}
|
39 |
+
EXTERNAL_MODEL_TO_LINK = {k: v["link"] for k,v in MODEL_META["model_meta"].items() if v.get("link", False)}
|
40 |
+
EXTERNAL_MODEL_TO_DIM = {k: v["dim"] for k,v in MODEL_META["model_meta"].items() if v.get("dim", False)}
|
41 |
+
EXTERNAL_MODEL_TO_SEQLEN = {k: v["seq_len"] for k,v in MODEL_META["model_meta"].items() if v.get("seq_len", False)}
|
42 |
+
EXTERNAL_MODEL_TO_SIZE = {k: v["size"] for k,v in MODEL_META["model_meta"].items() if v.get("size", False)}
|
43 |
+
PROPRIETARY_MODELS = {k for k,v in MODEL_META["model_meta"].items() if v.get("is_proprietary", False)}
|
44 |
+
TASK_DESCRIPTIONS = {k: v["task_description"] for k,v in TASKS_CONFIG.items()}
|
45 |
+
TASK_DESCRIPTIONS["Overall"] = "Overall performance across MTEB tasks."
|
46 |
+
SENTENCE_TRANSFORMERS_COMPATIBLE_MODELS = {k for k,v in MODEL_META["model_meta"].items() if v.get("is_sentence_transformers_compatible", False)}
|
47 |
+
MODELS_TO_SKIP = MODEL_META["models_to_skip"]
|
48 |
+
CROSS_ENCODERS = MODEL_META["cross_encoders"]
|
49 |
+
BI_ENCODERS = [k for k, _ in MODEL_META["model_meta"].items() if k not in CROSS_ENCODERS + ["bm25"]]
|
50 |
+
|
51 |
+
|
52 |
+
|
53 |
+
TASK_TO_TASK_TYPE = {task_category: [] for task_category in TASKS}
|
54 |
+
for board_config in BOARDS_CONFIG.values():
|
55 |
+
for task_category, task_list in board_config["tasks"].items():
|
56 |
+
TASK_TO_TASK_TYPE[task_category].extend(task_list)
|
57 |
+
|
58 |
+
|
59 |
+
## Don't cache this because we want to re-compute every time
|
60 |
+
# model_infos_path = "model_infos.json"
|
61 |
+
MODEL_INFOS = {}
|
62 |
+
# if os.path.exists(model_infos_path):
|
63 |
+
# with open(model_infos_path) as f:
|
64 |
+
# MODEL_INFOS = json.load(f)
|
65 |
+
|
66 |
+
def add_rank(df):
|
67 |
+
cols_to_rank = [col for col in df.columns if col not in ["Model", "Model Size (Million Parameters)", "Memory Usage (GB, fp32)", "Embedding Dimensions", "Max Tokens"]]
|
68 |
+
if len(cols_to_rank) == 1:
|
69 |
+
df.sort_values(cols_to_rank[0], ascending=False, inplace=True)
|
70 |
+
else:
|
71 |
+
df.insert(len(df.columns) - len(cols_to_rank), "Average", df[cols_to_rank].mean(axis=1, skipna=False))
|
72 |
+
df.sort_values("Average", ascending=False, inplace=True)
|
73 |
+
df.insert(0, "Rank", list(range(1, len(df) + 1)))
|
74 |
+
df = df.round(2)
|
75 |
+
# Fill NaN after averaging
|
76 |
+
df.fillna("", inplace=True)
|
77 |
+
return df
|
78 |
+
|
79 |
+
|
80 |
+
def make_clickable_model(model_name, link=None):
|
81 |
+
if link is None:
|
82 |
+
link = "https://huggingface.co/" + model_name
|
83 |
+
# Remove user from model name
|
84 |
+
return (
|
85 |
+
f'<a target="_blank" style="text-decoration: underline" href="{link}">{model_name.split("/")[-1]}</a>'
|
86 |
+
)
|
87 |
+
|
88 |
+
|
89 |
+
def add_lang(examples):
|
90 |
+
if not(examples["eval_language"]):
|
91 |
+
examples["mteb_dataset_name_with_lang"] = examples["mteb_dataset_name"]
|
92 |
+
else:
|
93 |
+
examples["mteb_dataset_name_with_lang"] = examples["mteb_dataset_name"] + f' ({examples["eval_language"]})'
|
94 |
+
return examples
|
95 |
+
|
96 |
+
def norm(names): return set([name.split(" ")[0] for name in names])
|
97 |
+
|
98 |
+
def add_task(examples):
|
99 |
+
# Could be added to the dataset loading script instead
|
100 |
+
task_name = examples["mteb_dataset_name"]
|
101 |
+
task_type = None
|
102 |
+
for task_category, task_list in TASK_TO_TASK_TYPE.items():
|
103 |
+
if task_name in norm(task_list):
|
104 |
+
task_type = task_category
|
105 |
+
break
|
106 |
+
if task_type is not None:
|
107 |
+
examples["mteb_task"] = task_type
|
108 |
+
else:
|
109 |
+
print("WARNING: Task not found for dataset", examples["mteb_dataset_name"])
|
110 |
+
examples["mteb_task"] = "Unknown"
|
111 |
+
return examples
|
112 |
+
|
113 |
+
def filter_metric_external(x, task, metrics):
|
114 |
+
# This is a hack for the passkey and needle retrieval test, which reports ndcg_at_1 (i.e. accuracy), rather than the ndcg_at_10 that is commonly used for retrieval tasks.
|
115 |
+
if x['mteb_dataset_name'] in ['LEMBNeedleRetrieval', 'LEMBPasskeyRetrieval']:
|
116 |
+
return x["mteb_task"] == task and x['metric'] == 'ndcg_at_1'
|
117 |
+
else:
|
118 |
+
return x["mteb_task"] == task and x["metric"] in metrics
|
119 |
+
|
120 |
+
def filter_metric_fetched(name, metric, expected_metrics):
|
121 |
+
# This is a hack for the passkey and needle retrieval test, which reports ndcg_at_1 (i.e. accuracy), rather than the ndcg_at_10 that is commonly used for retrieval tasks.
|
122 |
+
return metric == 'ndcg_at_1' if name in ['LEMBNeedleRetrieval', 'LEMBPasskeyRetrieval'] else metric in expected_metrics
|
123 |
+
|
124 |
+
|
125 |
+
def get_dim_seq_size(model):
|
126 |
+
filenames = [sib.rfilename for sib in model.siblings]
|
127 |
+
dim, seq = "", ""
|
128 |
+
for filename in filenames:
|
129 |
+
if re.match("\d+_Pooling/config.json", filename):
|
130 |
+
st_config_path = hf_hub_download(model.modelId, filename=filename)
|
131 |
+
dim = json.load(open(st_config_path)).get("word_embedding_dimension", "")
|
132 |
+
break
|
133 |
+
for filename in filenames:
|
134 |
+
if re.match("\d+_Dense/config.json", filename):
|
135 |
+
st_config_path = hf_hub_download(model.modelId, filename=filename)
|
136 |
+
dim = json.load(open(st_config_path)).get("out_features", dim)
|
137 |
+
if "config.json" in filenames:
|
138 |
+
config_path = hf_hub_download(model.modelId, filename="config.json")
|
139 |
+
config = json.load(open(config_path))
|
140 |
+
if not dim:
|
141 |
+
dim = config.get("hidden_dim", config.get("hidden_size", config.get("d_model", "")))
|
142 |
+
seq = config.get("n_positions", config.get("max_position_embeddings", config.get("n_ctx", config.get("seq_length", ""))))
|
143 |
+
|
144 |
+
if dim == "" or seq == "":
|
145 |
+
raise Exception(f"Could not find dim or seq for model {model.modelId}")
|
146 |
+
|
147 |
+
# Get model file size without downloading. Parameters in million parameters and memory in GB
|
148 |
+
parameters, memory = get_model_parameters_memory(model)
|
149 |
+
return dim, seq, parameters, memory
|
150 |
+
|
151 |
+
|
152 |
+
def get_external_model_results():
|
153 |
+
if os.path.exists("EXTERNAL_MODEL_RESULTS.json"):
|
154 |
+
with open("EXTERNAL_MODEL_RESULTS.json") as f:
|
155 |
+
EXTERNAL_MODEL_RESULTS = json.load(f)
|
156 |
+
# Update with models not contained
|
157 |
+
models_to_run = []
|
158 |
+
for model in EXTERNAL_MODELS:
|
159 |
+
if model not in EXTERNAL_MODEL_RESULTS:
|
160 |
+
models_to_run.append(model)
|
161 |
+
EXTERNAL_MODEL_RESULTS[model] = {k: {v[0]: []} for k, v in TASK_TO_METRIC.items()}
|
162 |
+
|
163 |
+
## only if we want to re-calculate all instead of using the cache... it's likely they haven't changed
|
164 |
+
## but if your model results have changed, delete it from the "EXTERNAL_MODEL_RESULTS.json" file
|
165 |
+
else:
|
166 |
+
EXTERNAL_MODEL_RESULTS = {model: {k: {v[0]: []} for k, v in TASK_TO_METRIC.items()} for model in EXTERNAL_MODELS}
|
167 |
+
models_to_run = EXTERNAL_MODELS
|
168 |
+
|
169 |
+
pbar = tqdm(models_to_run, desc="Fetching external model results")
|
170 |
+
for model in pbar:
|
171 |
+
pbar.set_description(f"Fetching external model results for {model!r}")
|
172 |
+
ds = load_dataset(RESULTS_REPO, model, trust_remote_code=True, download_mode='force_redownload', verification_mode="no_checks")
|
173 |
+
ds = ds.map(add_lang)
|
174 |
+
ds = ds.map(add_task)
|
175 |
+
base_dict = {"Model": make_clickable_model(model, link=EXTERNAL_MODEL_TO_LINK.get(model, f"https://huggingface.co/spaces/{REPO_ID}"))}
|
176 |
+
|
177 |
+
for task, metrics in TASK_TO_METRIC.items():
|
178 |
+
ds_dict = ds.filter(lambda x: filter_metric_external(x, task, metrics))["test"].to_dict()
|
179 |
+
ds_dict = {k: round(v, 2) for k, v in zip(ds_dict["mteb_dataset_name_with_lang"], ds_dict["score"])}
|
180 |
+
# metrics[0] is the main name for this metric; other names in the list are legacy for backward-compat
|
181 |
+
EXTERNAL_MODEL_RESULTS[model][task][metrics[0]].append({**base_dict, **ds_dict})
|
182 |
+
|
183 |
+
# Save & cache EXTERNAL_MODEL_RESULTS
|
184 |
+
with open("EXTERNAL_MODEL_RESULTS.json", "w") as f:
|
185 |
+
json.dump(EXTERNAL_MODEL_RESULTS, f, indent=4)
|
186 |
+
|
187 |
+
return EXTERNAL_MODEL_RESULTS
|
188 |
+
|
189 |
+
|
190 |
+
def get_mteb_data(tasks=["Clustering"], langs=[], datasets=[], fillna=True, add_emb_dim=True, task_to_metric=TASK_TO_METRIC, rank=True):
|
191 |
+
global MODEL_INFOS
|
192 |
+
|
193 |
+
with open("EXTERNAL_MODEL_RESULTS.json", "r") as f:
|
194 |
+
external_model_results = json.load(f)
|
195 |
+
|
196 |
+
api = API
|
197 |
+
models = list(api.list_models(filter="mteb"))
|
198 |
+
# Legacy names changes; Also fetch the old results & merge later
|
199 |
+
if ('MLSUMClusteringP2P (fr)' in datasets):
|
200 |
+
datasets.append('MLSUMClusteringP2P')
|
201 |
+
if ('MLSUMClusteringS2S (fr)' in datasets):
|
202 |
+
datasets.append('MLSUMClusteringS2S')
|
203 |
+
# Initialize list to models that we cannot fetch metadata from
|
204 |
+
df_list = []
|
205 |
+
for model in external_model_results:
|
206 |
+
results_list = []
|
207 |
+
for task in tasks:
|
208 |
+
# Not all models have InstructionRetrieval, other new tasks
|
209 |
+
if task not in external_model_results[model]: continue
|
210 |
+
results_list += external_model_results[model][task][task_to_metric[task][0]]
|
211 |
+
|
212 |
+
if len(datasets) > 0:
|
213 |
+
res = {k: v for d in results_list for k, v in d.items() if (k == "Model") or any([x in k for x in datasets])}
|
214 |
+
elif langs:
|
215 |
+
# Would be cleaner to rely on an extra language column instead
|
216 |
+
langs_format = [f"({lang})" for lang in langs]
|
217 |
+
res = {k: v for d in results_list for k, v in d.items() if any([k.split(" ")[-1] in (k, x) for x in langs_format])}
|
218 |
+
else:
|
219 |
+
res = {k: v for d in results_list for k, v in d.items()}
|
220 |
+
# Model & at least one result
|
221 |
+
if len(res) > 1:
|
222 |
+
if add_emb_dim:
|
223 |
+
res["Model Size (Million Parameters)"] = EXTERNAL_MODEL_TO_SIZE.get(model, "")
|
224 |
+
res["Memory Usage (GB, fp32)"] = round(res["Model Size (Million Parameters)"] * 1e6 * 4 / 1024**3, 2) if res["Model Size (Million Parameters)"] != "" else ""
|
225 |
+
res["Embedding Dimensions"] = EXTERNAL_MODEL_TO_DIM.get(model, "")
|
226 |
+
res["Max Tokens"] = EXTERNAL_MODEL_TO_SEQLEN.get(model, "")
|
227 |
+
df_list.append(res)
|
228 |
+
|
229 |
+
pbar = tqdm(models, desc="Fetching model metadata")
|
230 |
+
for model in pbar:
|
231 |
+
if model.modelId in MODELS_TO_SKIP: continue
|
232 |
+
pbar.set_description(f"Fetching {model.modelId!r} metadata")
|
233 |
+
readme_path = hf_hub_download(model.modelId, filename="README.md")
|
234 |
+
meta = metadata_load(readme_path)
|
235 |
+
MODEL_INFOS[model.modelId] = {
|
236 |
+
"metadata": meta
|
237 |
+
}
|
238 |
+
meta = MODEL_INFOS[model.modelId]["metadata"]
|
239 |
+
if "model-index" not in meta:
|
240 |
+
continue
|
241 |
+
# meta['model-index'][0]["results"] is list of elements like:
|
242 |
+
# {
|
243 |
+
# "task": {"type": "Classification"},
|
244 |
+
# "dataset": {
|
245 |
+
# "type": "mteb/amazon_massive_intent",
|
246 |
+
# "name": "MTEB MassiveIntentClassification (nb)",
|
247 |
+
# "config": "nb",
|
248 |
+
# "split": "test",
|
249 |
+
# },
|
250 |
+
# "metrics": [
|
251 |
+
# {"type": "accuracy", "value": 39.81506388702084},
|
252 |
+
# {"type": "f1", "value": 38.809586587791664},
|
253 |
+
# ],
|
254 |
+
# },
|
255 |
+
# Use "get" instead of dict indexing to skip incompat metadata instead of erroring out
|
256 |
+
if len(datasets) > 0:
|
257 |
+
task_results = [sub_res for sub_res in meta["model-index"][0]["results"] if (sub_res.get("task", {}).get("type", "") in tasks) and any([x in sub_res.get("dataset", {}).get("name", "") for x in datasets])]
|
258 |
+
elif langs:
|
259 |
+
task_results = [sub_res for sub_res in meta["model-index"][0]["results"] if (sub_res.get("task", {}).get("type", "") in tasks) and (sub_res.get("dataset", {}).get("config", "default") in ("default", *langs))]
|
260 |
+
else:
|
261 |
+
task_results = [sub_res for sub_res in meta["model-index"][0]["results"] if (sub_res.get("task", {}).get("type", "") in tasks)]
|
262 |
+
try:
|
263 |
+
out = [{res["dataset"]["name"].replace("MTEB ", ""): [round(score["value"], 2) for score in res["metrics"] if filter_metric_fetched(res["dataset"]["name"].replace("MTEB ", ""), score["type"], task_to_metric.get(res["task"]["type"]))][0]} for res in task_results]
|
264 |
+
except Exception as e:
|
265 |
+
print("ERROR", model.modelId, e)
|
266 |
+
continue
|
267 |
+
out = {k: v for d in out for k, v in d.items()}
|
268 |
+
out["Model"] = make_clickable_model(model.modelId)
|
269 |
+
# Model & at least one result
|
270 |
+
if len(out) > 1:
|
271 |
+
if add_emb_dim:
|
272 |
+
# The except clause triggers on gated repos, we can use external metadata for those
|
273 |
+
try:
|
274 |
+
MODEL_INFOS[model.modelId]["dim_seq_size"] = list(get_dim_seq_size(model))
|
275 |
+
except:
|
276 |
+
name_without_org = model.modelId.split("/")[-1]
|
277 |
+
# EXTERNAL_MODEL_TO_SIZE[name_without_org] refers to millions of parameters, so for memory usage
|
278 |
+
# we multiply by 1e6 to get just the number of parameters, then by 4 to get the number of bytes
|
279 |
+
# given fp32 precision (4 bytes per float), then divide by 1024**3 to get the number of GB
|
280 |
+
MODEL_INFOS[model.modelId]["dim_seq_size"] = (
|
281 |
+
EXTERNAL_MODEL_TO_DIM.get(name_without_org, ""),
|
282 |
+
EXTERNAL_MODEL_TO_SEQLEN.get(name_without_org, ""),
|
283 |
+
EXTERNAL_MODEL_TO_SIZE.get(name_without_org, ""),
|
284 |
+
round(EXTERNAL_MODEL_TO_SIZE[name_without_org] * 1e6 * 4 / 1024**3, 2) if name_without_org in EXTERNAL_MODEL_TO_SIZE else "",
|
285 |
+
)
|
286 |
+
out["Embedding Dimensions"], out["Max Tokens"], out["Model Size (Million Parameters)"], out["Memory Usage (GB, fp32)"] = tuple(MODEL_INFOS[model.modelId]["dim_seq_size"])
|
287 |
+
df_list.append(out)
|
288 |
+
if model.library_name == "sentence-transformers" or "sentence-transformers" in model.tags or "modules.json" in {file.rfilename for file in model.siblings}:
|
289 |
+
SENTENCE_TRANSFORMERS_COMPATIBLE_MODELS.add(out["Model"])
|
290 |
+
|
291 |
+
# # Save & cache MODEL_INFOS
|
292 |
+
# with open("model_infos.json", "w") as f:
|
293 |
+
# json.dump(MODEL_INFOS, f)
|
294 |
+
|
295 |
+
df = pd.DataFrame(df_list)
|
296 |
+
# If there are any models that are the same, merge them
|
297 |
+
# E.g. if out["Model"] has the same value in two places, merge & take whichever one is not NaN else just take the first one
|
298 |
+
df = df.groupby("Model", as_index=False).first()
|
299 |
+
# Put 'Model' column first
|
300 |
+
cols = sorted(list(df.columns))
|
301 |
+
base_columns = ["Model", "Model Size (Million Parameters)", "Memory Usage (GB, fp32)", "Embedding Dimensions", "Max Tokens"]
|
302 |
+
if len(datasets) > 0:
|
303 |
+
# Update legacy column names to be merged with newer ones
|
304 |
+
# Update 'MLSUMClusteringP2P (fr)' with values from 'MLSUMClusteringP2P'
|
305 |
+
if ('MLSUMClusteringP2P (fr)' in datasets) and ('MLSUMClusteringP2P' in cols):
|
306 |
+
df['MLSUMClusteringP2P (fr)'] = df['MLSUMClusteringP2P (fr)'].fillna(df['MLSUMClusteringP2P'])
|
307 |
+
datasets.remove('MLSUMClusteringP2P')
|
308 |
+
if ('MLSUMClusteringS2S (fr)' in datasets) and ('MLSUMClusteringS2S' in cols):
|
309 |
+
df['MLSUMClusteringS2S (fr)'] = df['MLSUMClusteringS2S (fr)'].fillna(df['MLSUMClusteringS2S'])
|
310 |
+
datasets.remove('MLSUMClusteringS2S')
|
311 |
+
# Filter invalid columns
|
312 |
+
cols = [col for col in cols if col in base_columns + datasets]
|
313 |
+
i = 0
|
314 |
+
for column in base_columns:
|
315 |
+
if column in cols:
|
316 |
+
cols.insert(i, cols.pop(cols.index(column)))
|
317 |
+
i += 1
|
318 |
+
df = df[cols]
|
319 |
+
if rank:
|
320 |
+
df = add_rank(df)
|
321 |
+
if fillna:
|
322 |
+
df.fillna("", inplace=True)
|
323 |
+
return df
|
324 |
+
|
325 |
+
|
326 |
+
# Get dict with a task list for each task category
|
327 |
+
# E.g. {"Classification": ["AmazonMassiveIntentClassification (en)", ...], "PairClassification": ["SprintDuplicateQuestions", ...]}
|
328 |
+
def get_mteb_average(task_dict: dict):
|
329 |
+
all_tasks = reduce(lambda x, y: x + y, task_dict.values())
|
330 |
+
DATA_OVERALL = get_mteb_data(
|
331 |
+
tasks=list(task_dict.keys()),
|
332 |
+
datasets=all_tasks,
|
333 |
+
fillna=False,
|
334 |
+
add_emb_dim=True,
|
335 |
+
rank=False,
|
336 |
+
)
|
337 |
+
# Debugging:
|
338 |
+
# DATA_OVERALL.to_csv("overall.csv")
|
339 |
+
|
340 |
+
DATA_OVERALL.insert(1, f"Average ({len(all_tasks)} datasets)", DATA_OVERALL[all_tasks].mean(axis=1, skipna=False))
|
341 |
+
for i, (task_category, task_category_list) in enumerate(task_dict.items()):
|
342 |
+
DATA_OVERALL.insert(i+2, f"{task_category} Average ({len(task_category_list)} datasets)", DATA_OVERALL[task_category_list].mean(axis=1, skipna=False))
|
343 |
+
DATA_OVERALL.sort_values(f"Average ({len(all_tasks)} datasets)", ascending=False, inplace=True)
|
344 |
+
# Start ranking from 1
|
345 |
+
DATA_OVERALL.insert(0, "Rank", list(range(1, len(DATA_OVERALL) + 1)))
|
346 |
+
|
347 |
+
DATA_OVERALL = DATA_OVERALL.round(2)
|
348 |
+
|
349 |
+
DATA_TASKS = {}
|
350 |
+
for task_category, task_category_list in task_dict.items():
|
351 |
+
DATA_TASKS[task_category] = add_rank(DATA_OVERALL[["Model", "Model Size (Million Parameters)", "Memory Usage (GB, fp32)"] + task_category_list])
|
352 |
+
DATA_TASKS[task_category] = DATA_TASKS[task_category][DATA_TASKS[task_category].iloc[:, 4:].ne("").any(axis=1)]
|
353 |
+
|
354 |
+
# Fill NaN after averaging
|
355 |
+
DATA_OVERALL.fillna("", inplace=True)
|
356 |
+
|
357 |
+
data_overall_rows = ["Rank", "Model", "Model Size (Million Parameters)", "Memory Usage (GB, fp32)", "Embedding Dimensions", "Max Tokens", f"Average ({len(all_tasks)} datasets)"]
|
358 |
+
for task_category, task_category_list in task_dict.items():
|
359 |
+
data_overall_rows.append(f"{task_category} Average ({len(task_category_list)} datasets)")
|
360 |
+
|
361 |
+
DATA_OVERALL = DATA_OVERALL[data_overall_rows]
|
362 |
+
DATA_OVERALL = DATA_OVERALL[DATA_OVERALL.iloc[:, 5:].ne("").any(axis=1)]
|
363 |
+
|
364 |
+
return DATA_OVERALL, DATA_TASKS
|
365 |
+
|
366 |
+
|
367 |
+
def refresh_leaderboard():
|
368 |
+
"""
|
369 |
+
The main code to refresh and calculate results for the leaderboard. It does this by fetching the results from the
|
370 |
+
external models and the models in the leaderboard, then calculating the average scores for each task category.
|
371 |
+
|
372 |
+
Returns:
|
373 |
+
dict: A dictionary containing the overall leaderboard and the task category leaderboards.
|
374 |
+
"""
|
375 |
+
|
376 |
+
# get external model results and cache them
|
377 |
+
external_results = get_external_model_results()
|
378 |
+
|
379 |
+
boards_data = {}
|
380 |
+
all_data_tasks = []
|
381 |
+
pbar_tasks = tqdm(BOARDS_CONFIG.items(), desc="Fetching leaderboard results for ???", total=len(BOARDS_CONFIG), leave=True)
|
382 |
+
for board, board_config in pbar_tasks:
|
383 |
+
boards_data[board] = {
|
384 |
+
"data_overall": None,
|
385 |
+
"data_tasks": {}
|
386 |
+
}
|
387 |
+
pbar_tasks.set_description(f"Fetching leaderboard results for {board!r}")
|
388 |
+
pbar_tasks.refresh()
|
389 |
+
if board_config["has_overall"]:
|
390 |
+
data_overall, data_tasks = get_mteb_average(board_config["tasks"])
|
391 |
+
boards_data[board]["data_overall"] = data_overall
|
392 |
+
boards_data[board]["data_tasks"] = data_tasks
|
393 |
+
all_data_tasks.extend(data_tasks.values())
|
394 |
+
else:
|
395 |
+
for task_category, task_category_list in board_config["tasks"].items():
|
396 |
+
data_task_category = get_mteb_data(tasks=[task_category], datasets=task_category_list)
|
397 |
+
data_task_category.drop(columns=["Embedding Dimensions", "Max Tokens"], inplace=True)
|
398 |
+
boards_data[board]["data_tasks"][task_category] = data_task_category
|
399 |
+
all_data_tasks.append(data_task_category)
|
400 |
+
|
401 |
+
return all_data_tasks, boards_data
|
402 |
+
|
403 |
+
|
404 |
+
|
405 |
+
if __name__ == "__main__":
|
406 |
+
print(f"Refreshing leaderboard statistics...")
|
407 |
+
all_data_tasks, boards_data = refresh_leaderboard()
|
408 |
+
|
409 |
+
print(f"Done calculating, saving...")
|
410 |
+
# save them so that the leaderboard can use them, as pickles because they're quite complex objects
|
411 |
+
with open("all_data_tasks.pkl", "wb") as f:
|
412 |
+
pickle.dump(all_data_tasks, f)
|
413 |
+
|
414 |
+
with open("boards_data.pkl", "wb") as f:
|
415 |
+
pickle.dump(boards_data, f)
|
test.txt
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
This is a test
|
|
|
|