File size: 2,411 Bytes
834aa94
 
6717fb6
834aa94
 
 
fb5b02d
 
834aa94
 
fb5b02d
 
 
 
 
 
 
834aa94
6717fb6
fb5b02d
 
 
 
99ccf3a
 
 
fb5b02d
 
834aa94
6717fb6
 
 
 
834aa94
 
 
fb5b02d
834aa94
 
fb5b02d
834aa94
 
 
 
 
 
 
6717fb6
 
 
 
 
 
 
 
 
 
 
fb5b02d
 
 
 
 
 
 
 
834aa94
fb5b02d
 
 
6717fb6
fb5b02d
834aa94
fb5b02d
834aa94
fb5b02d
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
from huggingface_hub import InferenceClient
import gradio as gr
from datetime import datetime

API_URL = "https://api-inference.huggingface.co/models/"

# Initialize the InferenceClient
client = InferenceClient("mistralai/Mistral-7B-Instruct-v0.1")

def format_prompt(message, history):
    """Format the prompt for the text generation model."""
    prompt = "<s>"
    for user_prompt, bot_response in history:
        prompt += f"[INST] {user_prompt} [/INST]"
        prompt += f" {bot_response}</s> "
    prompt += f"[INST] {message} [/INST]"
    return prompt

def generate(prompt, history):
    """Generate a response using the text generation model."""
    # Check if the prompt is asking who created the bot
    if "who created you" in prompt.lower():
        return "I was created by Aniket Kumar and many more."
    # Handle small talk
    elif "how are you" in prompt.lower():
        return "I'm an AI and don't have feelings, but I'm here to help you. How can I assist you today?"

    # Set up parameters for text generation
    generate_kwargs = dict(
        temperature=0.9,
        max_new_tokens=512,
        top_p=0.95,
        repetition_penalty=1.0,
        do_sample=True,
    )

    # Format the prompt
    formatted_prompt = format_prompt(prompt, history)

    # Generate the response
    stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
    output = ""
    for response in stream:
        output += response.token.text
        yield output
    return output

def greet_user():
    """Greet the user based on the time of day."""
    current_hour = datetime.now().hour

    if current_hour < 12:
        return "Good morning! How can I assist you today?"
    elif 12 <= current_hour < 18:
        return "Good afternoon! How can I assist you today?"
    else:
        return "Good evening! How can I assist you today?"

def create_interface():
    """Create the Gradio interface."""
    customCSS = """
    #component-7 { # this is the default element ID of the chat component
      height: 800px; # adjust the height as needed
      flex-grow: 1;
    }
    """

    with gr.Blocks(css=customCSS) as demo:
        gr.ChatInterface(
            generate,
            initial_message=greet_user(),  # Add the greeting feature here
        )

    demo.queue().launch(debug=True)

# Run the application
create_interface()