saritha5's picture
Create app.py
8153380
raw
history blame
5.27 kB
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from datetime import datetime
from datetime import timedelta
from sklearn.model_selection import RandomizedSearchCV, GridSearchCV, train_test_split
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import r2_score
from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import StandardScaler
import streamlit as st
st.title("Next Failure Prediction")
# Loading Dataset
df1 = pd.read_csv(r'Final_Next_failure_Dataset.csv')
# replace values in the Manufacturer column with company names
replace_dict1 = {1: 'ABC Company', 2: 'DEF Company', 3: 'GHI Company', 4: 'JKL Company', 5: 'XYZ Company'}
df1['Manufacturer'] = df1['Manufacturer'].replace(replace_dict1)
# replace values in the Last_Maintenance_Type column again
replace_dict2 = {1: 'Corrective', 2: 'Preventive'}
df1['Last_Maintenance_Type'] = df1['Last_Maintenance_Type'].replace(replace_dict2)
# replace values in the Prior_Maintenance column again
replace_dict3 = {1: 'Irregular', 2: 'Regular'}
df1['Prior_Maintenance'] = df1['Prior_Maintenance'].replace(replace_dict3)
# replace values in the Repair_Type column again
replace_dict4 = {1: 'Hardware', 2: 'Software'}
df1['Repair_Type'] = df1['Repair_Type'].replace(replace_dict4)
df = df1.copy()
# For Manufacturer
le_manu = LabelEncoder()
df['Manufacturer'] = le_manu.fit_transform(df['Manufacturer'])
# For Last_Maintenance_Type
le_last = LabelEncoder()
df['Last_Maintenance_Type'] = le_last.fit_transform(df['Last_Maintenance_Type'])
# For Prior_Maintenance
le_prior = LabelEncoder()
df['Prior_Maintenance'] = le_prior.fit_transform(df['Prior_Maintenance'])
# For Repair_Type
le_repair = LabelEncoder()
df['Repair_Type'] = le_repair.fit_transform(df['Repair_Type'])
#Splitting the data train ans test data
X = df.drop('Time_to_Failure_(hours)', axis = 1)
y = df['Time_to_Failure_(hours)']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state = 0)
# Train Random Forest Regression model
model = RandomForestRegressor(random_state = 0)
model.fit(X_train, y_train)
# Make predictions on train data
y_pred_train = model.predict(X_train)
# DATA from user
def user_report():
manufacturer = st.sidebar.selectbox("Manufacturer",
("JKL Company", "GHI Company","DEF Company","ABC Company","XYZ Company" ))
if manufacturer=='JKL Company':
manufacturer=3
elif manufacturer=="GHI Company":
manufacturer=2
elif manufacturer=="DEF Company":
manufacturer=1
elif manufacturer=="ABC Company":
manufacturer =0
else:
manufacturer=4
total_operating_hours = st.sidebar.slider('Total Operating Hours)', 1000,2500, 1500 )
Usage_Intensity = st.sidebar.slider("Usage_Intensity(hous/day)",1,10,4)
Last_Maintenance_Type = st.sidebar.selectbox("Last Maintainece Type",("Corrective","Preventive"))
if Last_Maintenance_Type =='Corrective':
Last_Maintenance_Type=0
else:
Last_Maintenance_Type=1
Prior_Maintenance = st.sidebar.selectbox("Prior Maintainece",("Regular","Irregular"))
if Prior_Maintenance =='Regular':
Prior_Maintenance=1
else:
Prior_Maintenance=0
Average_Temperature= st.sidebar.slider('Average Temperature', 20,40, 35 )
humidity = st.sidebar.slider('Humidity', 52,70, 55 )
Vibration_Level = st.sidebar.slider('Vibration Level', 2,4, 2 )
Pressure = st.sidebar.slider('Pressure', 28,32, 30 )
Power_Input_Voltage= st.sidebar.slider('Power Input Voltage (V)',105,120,115)
Repair_Type = st.sidebar.selectbox("Repair Type",("Hardware","Software"))
if Repair_Type =='Software':
Repair_Type=1
else:
Repair_Type=0
load_factor = st.sidebar.number_input('Enter the Load Factor (any number between 0 to 1 )',min_value=0.0,max_value=1.0,step=0.1)
engine_speed=st.sidebar.slider('Engine Speed',7000,8000,7800)
Oil_Temperature=st.sidebar.slider('Oil Temperature',170,185,172)
user_report_data = {
'Manufacturer': manufacturer,
'Total_Operating_Hours': total_operating_hours,
'Usage_Intensity_(hours/day)': Usage_Intensity ,
'Last_Maintenance_Type': Last_Maintenance_Type,
"Prior_Maintenance":Prior_Maintenance,
'Average_Temperature':Average_Temperature,
'Humidity': humidity,
'Vibration_Level': Vibration_Level,
'Pressure': Pressure,
'Power_Input_Voltage': Power_Input_Voltage,
'Repair_Type': Repair_Type ,
'Load_Factor': load_factor,
'Engine_Speed': engine_speed,
'Oil_Temperature':Oil_Temperature
}
report_data = pd.DataFrame(user_report_data, index=[0])
return report_data
#Customer Data
user_data = user_report()
st.subheader("Component Details")
st.write(user_data)
# define the prediction function
def prediction(user_data):
predicted_max_number_of_repairs = model.predict(user_data)
# return the predicted max number of repairs as output
return np.round(predicted_max_number_of_repairs[0])
# Function calling
y_pred = prediction(user_data)
st.write("Click here to see the Predictions")
if st.button("Predict"):
st.subheader(f"Next Failure is {y_pred} hours ")