File size: 5,073 Bytes
ced361b
fdbed18
 
 
3ef3bdb
fdbed18
 
 
ced361b
3ef3bdb
 
 
 
fdbed18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef6e275
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fdbed18
 
 
 
ced361b
 
 
b9a5329
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165

import numpy as np
import matplotlib.pylab as plt
import ruptures as rpt
import streamlit as st
from ruptures.metrics import precision_recall
from ruptures.metrics import hausdorff
from ruptures.metrics import randindex


st.title("Change Point Detection")
# Generating Signal

def pw_constant_input(n,dim,n_bkps,sigma):
    """Piecewise constant (pw_constant)"""
    # n, dim  # number of samples, dimension
    # n_bkps, sigma # number of change points, noise standard deviation
    signal, bkps = rpt.pw_constant(n, dim, n_bkps, noise_std=sigma)
    rpt.display(signal, bkps)
    return signal,bkps

def pw_linear_input(n,dim,n_bkps,sigma):
    """Piecewise Linear"""
    # creation of data
    # n, dim = 500, 3  # number of samples, dimension of the covariates
    # n_bkps, sigma = 3, 5  # number of change points, noise standart deviation
    signal, bkps = rpt.pw_linear(n, dim, n_bkps, noise_std=sigma)
    rpt.display(signal, bkps)
    return signal,bkps

def pw_normal_input(n,dim,n_bkps,sigma):
    """Piecewise 2D Gaussian process (pw_normal)#"""
    # creation of data
    #n = 500  # number of samples
    #n_bkps = 3  # number of change points
    signal, bkps = rpt.pw_normal(n, n_bkps)
    rpt.display(signal, bkps)
    return signal,bkps

def pw_wavy_input(n,dim,n_bkps,sigma):
    # creation of data
    #n, dim = 500, 3  # number of samples, dimension
    #n_bkps, sigma = 3, 5  # number of change points, noise standart deviation
    signal, bkps = rpt.pw_wavy(n, n_bkps, noise_std=sigma)
    rpt.display(signal, bkps)
    return signal,bkps

input_list = ['piecewiseConstant','piecewiseLinear','piecewiseNormal','piecewiseSinusoidal']
generate_signal = st.selectbox(label = "Choose an input signal", options = input_list)

n,dim,n_bkps,sigma = st.columns(4)
with n:
    n= st.number_input('No of Samples',min_value=100,step=1)
with dim:
    dim = st.number_input('No of dimesions',min_value=1,max_value = 5,step=1)
with n_bkps:
    n_bkps = st.number_input('No of breakpoints',min_value=2,step=1)
with sigma:
    sigma = st.number_input('Variance',min_value=1,max_value=4,step=1)

if generate_signal == 'piecewiseConstant':
     signal,bkps = pw_constant_input(n,dim,n_bkps,sigma)
elif generate_signal== 'piecewiseLinear':
    signal,bkps = pw_linear_input(n,dim,n_bkps,sigma)
elif generate_signal == 'piecewiseNormal':
    signal,bkps = pw_normal_input(n,dim,n_bkps,sigma)
else:
    signal,bkps= pw_wavy_input(n,dim,n_bkps,sigma)

fig, axarr = rpt.display(signal,bkps)
st.pyplot(fig)

def dynp_method(signal,bkps,n_bkps):
    # change point detection
    model = "l1"  # "l2", "rbf"
    algo = rpt.Dynp(model=model, min_size=3, jump=5).fit(signal)
    my_bkps = algo.predict(n_bkps)
    # show results
    fig,axarr = rpt.show.display(signal, bkps, my_bkps, figsize=(10, 6))
    #plt.show()
    st.pyplot(fig)
    return my_bkps

def pelt_method(signal,bkps,n_bkps):
    # change point detection
    model = "l1"  # "l2", "rbf"
    algo = rpt.Pelt(model=model, min_size=3, jump=5).fit(signal)
    my_bkps = algo.predict(pen=3)

    # show results
    fig, ax_arr = rpt.display(signal, bkps, my_bkps, figsize=(10, 6))
    st.pyplot(fig)
    return my_bkps
    

def bin_seg_method(signal,bkps,n_bkps):
    # change point detection
    model = "l2"  # "l1", "rbf", "linear", "normal", "ar",...
    algo = rpt.Binseg(model=model).fit(signal)
    my_bkps = algo.predict(n_bkps)

    # show results
    fg,axxarr = rpt.show.display(signal, bkps, my_bkps, figsize=(10, 6))
    st.pyplot(fig)
    return my_bkps

def bot_up_seg(signal,bkps,n_bkps):
    # change point detection
    model = "l2"  # "l1", "rbf", "linear", "normal", "ar",...
    algo = rpt.Binseg(model=model).fit(signal)
    my_bkps = algo.predict(n_bkps)

    # show results
    fig,axxar = rpt.show.display(signal, bkps, my_bkps, figsize=(10, 6))
    st.pyplot(fig)
    return my_bkps

def win_sli_seg(signal,bkps,n_bkps):
    # change point detection
    model = "l2"  # "l1", "rbf", "linear", "normal", "ar"
    algo = rpt.Window(width=40, model=model).fit(signal)
    my_bkps = algo.predict(n_bkps)

    # show results
    fig,axxar= rpt.show.display(signal, bkps, my_bkps, figsize=(10, 6))
    st.pyplot(fig)
    return my_bkps
    

searchmethod_list = ['Dynamic Programming','Pelt','Binary Segmentation','Bottom-up Segmentation','Window sliding segmentation']
detection_model = st.selectbox(label = "Choose a Detection Method",options = searchmethod_list)

if detection_model== 'Dynamic Programming':
    bkps1 = dynp_method(signal,bkps,n_bkps)
    
elif detection_model=='Pelt':
    bkps1 = pelt_method(signal,bkps,n_bkps)
elif detection_model=='Binary Segmentation':
    bkps1 = bin_seg_method(signal,bkps,n_bkps)
elif detection_model=='Bottom-up Segmentation':
    bkps1 = bot_up_seg(signal,bkps,n_bkps)
else:
    bkps1 = win_sli_seg(signal,bkps,n_bkps)

p, r = precision_recall(bkps, bkps1)
st.header('Precision and Recall')
st.write(p, r)

st.header('Hausdorff metric')
st.write(hausdorff(bkps, bkps1))
    
st.header('Rand index')


st.write(randindex(bkps, bkps1))