yolov6 / app.py
Theivaprakasham's picture
adding app
be49b0b
raw
history blame
2.14 kB
import gradio as gr
import torch
from PIL import Image
import subprocess
import os
import PIL
from pathlib import Path
import uuid
# Images
torch.hub.download_url_to_file('https://miro.medium.com/max/1400/1*EYFejGUjvjPcc4PZTwoufw.jpeg', '1*EYFejGUjvjPcc4PZTwoufw.jpeg')
torch.hub.download_url_to_file('https://production-media.paperswithcode.com/tasks/ezgif-frame-001_OZzxdny.jpg', 'ezgif-frame-001_OZzxdny.jpg')
torch.hub.download_url_to_file('https://favtutor.com/resources/images/uploads/Social_Distancing_Covid_19__1.jpg', 'Social_Distancing_Covid_19__1.jpg')
torch.hub.download_url_to_file('https://nkcf.org/wp-content/uploads/2017/11/people.jpg', 'people.jpg')
def yolo(im):
file_name = str(uuid.uuid4())
im.save(f'{file_name}.jpg')
os.system(f"python tools/infer.py --weights yolov6s.pt --source {str(file_name)}.jpg --project ''")
img = PIL.Image.open(f"exp/{file_name}.jpg")
os.remove(f"exp/{file_name}.jpg")
os.remove(f'{file_name}.jpg')
return img
inputs = gr.inputs.Image(type='pil', label="Original Image")
outputs = gr.outputs.Image(type="pil", label="Output Image")
title = "YOLOv6 - Demo"
description = "YOLOv6 is a single-stage object detection framework dedicated to industrial applications, with hardware-friendly efficient design and high performance. Here is a quick Gradio Demo for testing YOLOv6s model. More details from <a href='https://github.com/meituan/YOLOv6'>https://github.com/meituan/YOLOv6</a> "
article = "<p>YOLOv6-nano achieves 35.0 mAP on COCO val2017 dataset with 1242 FPS on T4 using TensorRT FP16 for bs32 inference, and YOLOv6-s achieves 43.1 mAP on COCO val2017 dataset with 520 FPS on T4 using TensorRT FP16 for bs32 inference. More information at <a href='https://github.com/meituan/YOLOv6'>https://github.com/meituan/YOLOv6</a></p>"
examples = [['1*EYFejGUjvjPcc4PZTwoufw.jpeg'], ['ezgif-frame-001_OZzxdny.jpg'], ['Social_Distancing_Covid_19__1.jpg'], ['people.jpg']]
gr.Interface(yolo, inputs, outputs, title=title, description=description, article=article, examples=examples, analytics_enabled = True, enable_queue=True).launch(inline=False, share=False, debug=False)