|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import Any, Dict, Optional, Tuple, Union
|
|
|
|
import numpy as np
|
|
import torch
|
|
import torch.nn.functional as F
|
|
from torch import nn
|
|
|
|
from diffusers.utils import is_torch_version, logging
|
|
from diffusers.utils.torch_utils import apply_freeu
|
|
from diffusers.models.activations import get_activation
|
|
from diffusers.models.attention_processor import Attention, AttnAddedKVProcessor, AttnAddedKVProcessor2_0
|
|
from diffusers.models.dual_transformer_2d import DualTransformer2DModel
|
|
from diffusers.models.normalization import AdaGroupNorm
|
|
from diffusers.models.resnet import Downsample2D, FirDownsample2D, FirUpsample2D, KDownsample2D, KUpsample2D, ResnetBlock2D, Upsample2D
|
|
from src.transformerhacked_garmnet import Transformer2DModel
|
|
from einops import rearrange
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
|
|
def get_down_block(
|
|
down_block_type: str,
|
|
num_layers: int,
|
|
in_channels: int,
|
|
out_channels: int,
|
|
temb_channels: int,
|
|
add_downsample: bool,
|
|
resnet_eps: float,
|
|
resnet_act_fn: str,
|
|
transformer_layers_per_block: int = 1,
|
|
num_attention_heads: Optional[int] = None,
|
|
resnet_groups: Optional[int] = None,
|
|
cross_attention_dim: Optional[int] = None,
|
|
downsample_padding: Optional[int] = None,
|
|
dual_cross_attention: bool = False,
|
|
use_linear_projection: bool = False,
|
|
only_cross_attention: bool = False,
|
|
upcast_attention: bool = False,
|
|
resnet_time_scale_shift: str = "default",
|
|
attention_type: str = "default",
|
|
resnet_skip_time_act: bool = False,
|
|
resnet_out_scale_factor: float = 1.0,
|
|
cross_attention_norm: Optional[str] = None,
|
|
attention_head_dim: Optional[int] = None,
|
|
downsample_type: Optional[str] = None,
|
|
dropout: float = 0.0,
|
|
):
|
|
|
|
if attention_head_dim is None:
|
|
logger.warn(
|
|
f"It is recommended to provide `attention_head_dim` when calling `get_down_block`. Defaulting `attention_head_dim` to {num_attention_heads}."
|
|
)
|
|
attention_head_dim = num_attention_heads
|
|
|
|
down_block_type = down_block_type[7:] if down_block_type.startswith("UNetRes") else down_block_type
|
|
if down_block_type == "DownBlock2D":
|
|
return DownBlock2D(
|
|
num_layers=num_layers,
|
|
in_channels=in_channels,
|
|
out_channels=out_channels,
|
|
temb_channels=temb_channels,
|
|
dropout=dropout,
|
|
add_downsample=add_downsample,
|
|
resnet_eps=resnet_eps,
|
|
resnet_act_fn=resnet_act_fn,
|
|
resnet_groups=resnet_groups,
|
|
downsample_padding=downsample_padding,
|
|
resnet_time_scale_shift=resnet_time_scale_shift,
|
|
)
|
|
elif down_block_type == "ResnetDownsampleBlock2D":
|
|
return ResnetDownsampleBlock2D(
|
|
num_layers=num_layers,
|
|
in_channels=in_channels,
|
|
out_channels=out_channels,
|
|
temb_channels=temb_channels,
|
|
dropout=dropout,
|
|
add_downsample=add_downsample,
|
|
resnet_eps=resnet_eps,
|
|
resnet_act_fn=resnet_act_fn,
|
|
resnet_groups=resnet_groups,
|
|
resnet_time_scale_shift=resnet_time_scale_shift,
|
|
skip_time_act=resnet_skip_time_act,
|
|
output_scale_factor=resnet_out_scale_factor,
|
|
)
|
|
elif down_block_type == "AttnDownBlock2D":
|
|
if add_downsample is False:
|
|
downsample_type = None
|
|
else:
|
|
downsample_type = downsample_type or "conv"
|
|
return AttnDownBlock2D(
|
|
num_layers=num_layers,
|
|
in_channels=in_channels,
|
|
out_channels=out_channels,
|
|
temb_channels=temb_channels,
|
|
dropout=dropout,
|
|
resnet_eps=resnet_eps,
|
|
resnet_act_fn=resnet_act_fn,
|
|
resnet_groups=resnet_groups,
|
|
downsample_padding=downsample_padding,
|
|
attention_head_dim=attention_head_dim,
|
|
resnet_time_scale_shift=resnet_time_scale_shift,
|
|
downsample_type=downsample_type,
|
|
)
|
|
elif down_block_type == "CrossAttnDownBlock2D":
|
|
if cross_attention_dim is None:
|
|
raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlock2D")
|
|
return CrossAttnDownBlock2D(
|
|
num_layers=num_layers,
|
|
transformer_layers_per_block=transformer_layers_per_block,
|
|
in_channels=in_channels,
|
|
out_channels=out_channels,
|
|
temb_channels=temb_channels,
|
|
dropout=dropout,
|
|
add_downsample=add_downsample,
|
|
resnet_eps=resnet_eps,
|
|
resnet_act_fn=resnet_act_fn,
|
|
resnet_groups=resnet_groups,
|
|
downsample_padding=downsample_padding,
|
|
cross_attention_dim=cross_attention_dim,
|
|
num_attention_heads=num_attention_heads,
|
|
dual_cross_attention=dual_cross_attention,
|
|
use_linear_projection=use_linear_projection,
|
|
only_cross_attention=only_cross_attention,
|
|
upcast_attention=upcast_attention,
|
|
resnet_time_scale_shift=resnet_time_scale_shift,
|
|
attention_type=attention_type,
|
|
)
|
|
elif down_block_type == "SimpleCrossAttnDownBlock2D":
|
|
if cross_attention_dim is None:
|
|
raise ValueError("cross_attention_dim must be specified for SimpleCrossAttnDownBlock2D")
|
|
return SimpleCrossAttnDownBlock2D(
|
|
num_layers=num_layers,
|
|
in_channels=in_channels,
|
|
out_channels=out_channels,
|
|
temb_channels=temb_channels,
|
|
dropout=dropout,
|
|
add_downsample=add_downsample,
|
|
resnet_eps=resnet_eps,
|
|
resnet_act_fn=resnet_act_fn,
|
|
resnet_groups=resnet_groups,
|
|
cross_attention_dim=cross_attention_dim,
|
|
attention_head_dim=attention_head_dim,
|
|
resnet_time_scale_shift=resnet_time_scale_shift,
|
|
skip_time_act=resnet_skip_time_act,
|
|
output_scale_factor=resnet_out_scale_factor,
|
|
only_cross_attention=only_cross_attention,
|
|
cross_attention_norm=cross_attention_norm,
|
|
)
|
|
elif down_block_type == "SkipDownBlock2D":
|
|
return SkipDownBlock2D(
|
|
num_layers=num_layers,
|
|
in_channels=in_channels,
|
|
out_channels=out_channels,
|
|
temb_channels=temb_channels,
|
|
dropout=dropout,
|
|
add_downsample=add_downsample,
|
|
resnet_eps=resnet_eps,
|
|
resnet_act_fn=resnet_act_fn,
|
|
downsample_padding=downsample_padding,
|
|
resnet_time_scale_shift=resnet_time_scale_shift,
|
|
)
|
|
elif down_block_type == "AttnSkipDownBlock2D":
|
|
return AttnSkipDownBlock2D(
|
|
num_layers=num_layers,
|
|
in_channels=in_channels,
|
|
out_channels=out_channels,
|
|
temb_channels=temb_channels,
|
|
dropout=dropout,
|
|
add_downsample=add_downsample,
|
|
resnet_eps=resnet_eps,
|
|
resnet_act_fn=resnet_act_fn,
|
|
attention_head_dim=attention_head_dim,
|
|
resnet_time_scale_shift=resnet_time_scale_shift,
|
|
)
|
|
elif down_block_type == "DownEncoderBlock2D":
|
|
return DownEncoderBlock2D(
|
|
num_layers=num_layers,
|
|
in_channels=in_channels,
|
|
out_channels=out_channels,
|
|
dropout=dropout,
|
|
add_downsample=add_downsample,
|
|
resnet_eps=resnet_eps,
|
|
resnet_act_fn=resnet_act_fn,
|
|
resnet_groups=resnet_groups,
|
|
downsample_padding=downsample_padding,
|
|
resnet_time_scale_shift=resnet_time_scale_shift,
|
|
)
|
|
elif down_block_type == "AttnDownEncoderBlock2D":
|
|
return AttnDownEncoderBlock2D(
|
|
num_layers=num_layers,
|
|
in_channels=in_channels,
|
|
out_channels=out_channels,
|
|
dropout=dropout,
|
|
add_downsample=add_downsample,
|
|
resnet_eps=resnet_eps,
|
|
resnet_act_fn=resnet_act_fn,
|
|
resnet_groups=resnet_groups,
|
|
downsample_padding=downsample_padding,
|
|
attention_head_dim=attention_head_dim,
|
|
resnet_time_scale_shift=resnet_time_scale_shift,
|
|
)
|
|
elif down_block_type == "KDownBlock2D":
|
|
return KDownBlock2D(
|
|
num_layers=num_layers,
|
|
in_channels=in_channels,
|
|
out_channels=out_channels,
|
|
temb_channels=temb_channels,
|
|
dropout=dropout,
|
|
add_downsample=add_downsample,
|
|
resnet_eps=resnet_eps,
|
|
resnet_act_fn=resnet_act_fn,
|
|
)
|
|
elif down_block_type == "KCrossAttnDownBlock2D":
|
|
return KCrossAttnDownBlock2D(
|
|
num_layers=num_layers,
|
|
in_channels=in_channels,
|
|
out_channels=out_channels,
|
|
temb_channels=temb_channels,
|
|
dropout=dropout,
|
|
add_downsample=add_downsample,
|
|
resnet_eps=resnet_eps,
|
|
resnet_act_fn=resnet_act_fn,
|
|
cross_attention_dim=cross_attention_dim,
|
|
attention_head_dim=attention_head_dim,
|
|
add_self_attention=True if not add_downsample else False,
|
|
)
|
|
raise ValueError(f"{down_block_type} does not exist.")
|
|
|
|
|
|
def get_up_block(
|
|
up_block_type: str,
|
|
num_layers: int,
|
|
in_channels: int,
|
|
out_channels: int,
|
|
prev_output_channel: int,
|
|
temb_channels: int,
|
|
add_upsample: bool,
|
|
resnet_eps: float,
|
|
resnet_act_fn: str,
|
|
resolution_idx: Optional[int] = None,
|
|
transformer_layers_per_block: int = 1,
|
|
num_attention_heads: Optional[int] = None,
|
|
resnet_groups: Optional[int] = None,
|
|
cross_attention_dim: Optional[int] = None,
|
|
dual_cross_attention: bool = False,
|
|
use_linear_projection: bool = False,
|
|
only_cross_attention: bool = False,
|
|
upcast_attention: bool = False,
|
|
resnet_time_scale_shift: str = "default",
|
|
attention_type: str = "default",
|
|
resnet_skip_time_act: bool = False,
|
|
resnet_out_scale_factor: float = 1.0,
|
|
cross_attention_norm: Optional[str] = None,
|
|
attention_head_dim: Optional[int] = None,
|
|
upsample_type: Optional[str] = None,
|
|
dropout: float = 0.0,
|
|
) -> nn.Module:
|
|
|
|
if attention_head_dim is None:
|
|
logger.warn(
|
|
f"It is recommended to provide `attention_head_dim` when calling `get_up_block`. Defaulting `attention_head_dim` to {num_attention_heads}."
|
|
)
|
|
attention_head_dim = num_attention_heads
|
|
|
|
up_block_type = up_block_type[7:] if up_block_type.startswith("UNetRes") else up_block_type
|
|
if up_block_type == "UpBlock2D":
|
|
return UpBlock2D(
|
|
num_layers=num_layers,
|
|
in_channels=in_channels,
|
|
out_channels=out_channels,
|
|
prev_output_channel=prev_output_channel,
|
|
temb_channels=temb_channels,
|
|
resolution_idx=resolution_idx,
|
|
dropout=dropout,
|
|
add_upsample=add_upsample,
|
|
resnet_eps=resnet_eps,
|
|
resnet_act_fn=resnet_act_fn,
|
|
resnet_groups=resnet_groups,
|
|
resnet_time_scale_shift=resnet_time_scale_shift,
|
|
)
|
|
elif up_block_type == "ResnetUpsampleBlock2D":
|
|
return ResnetUpsampleBlock2D(
|
|
num_layers=num_layers,
|
|
in_channels=in_channels,
|
|
out_channels=out_channels,
|
|
prev_output_channel=prev_output_channel,
|
|
temb_channels=temb_channels,
|
|
resolution_idx=resolution_idx,
|
|
dropout=dropout,
|
|
add_upsample=add_upsample,
|
|
resnet_eps=resnet_eps,
|
|
resnet_act_fn=resnet_act_fn,
|
|
resnet_groups=resnet_groups,
|
|
resnet_time_scale_shift=resnet_time_scale_shift,
|
|
skip_time_act=resnet_skip_time_act,
|
|
output_scale_factor=resnet_out_scale_factor,
|
|
)
|
|
elif up_block_type == "CrossAttnUpBlock2D":
|
|
if cross_attention_dim is None:
|
|
raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlock2D")
|
|
return CrossAttnUpBlock2D(
|
|
num_layers=num_layers,
|
|
transformer_layers_per_block=transformer_layers_per_block,
|
|
in_channels=in_channels,
|
|
out_channels=out_channels,
|
|
prev_output_channel=prev_output_channel,
|
|
temb_channels=temb_channels,
|
|
resolution_idx=resolution_idx,
|
|
dropout=dropout,
|
|
add_upsample=add_upsample,
|
|
resnet_eps=resnet_eps,
|
|
resnet_act_fn=resnet_act_fn,
|
|
resnet_groups=resnet_groups,
|
|
cross_attention_dim=cross_attention_dim,
|
|
num_attention_heads=num_attention_heads,
|
|
dual_cross_attention=dual_cross_attention,
|
|
use_linear_projection=use_linear_projection,
|
|
only_cross_attention=only_cross_attention,
|
|
upcast_attention=upcast_attention,
|
|
resnet_time_scale_shift=resnet_time_scale_shift,
|
|
attention_type=attention_type,
|
|
)
|
|
elif up_block_type == "SimpleCrossAttnUpBlock2D":
|
|
if cross_attention_dim is None:
|
|
raise ValueError("cross_attention_dim must be specified for SimpleCrossAttnUpBlock2D")
|
|
return SimpleCrossAttnUpBlock2D(
|
|
num_layers=num_layers,
|
|
in_channels=in_channels,
|
|
out_channels=out_channels,
|
|
prev_output_channel=prev_output_channel,
|
|
temb_channels=temb_channels,
|
|
resolution_idx=resolution_idx,
|
|
dropout=dropout,
|
|
add_upsample=add_upsample,
|
|
resnet_eps=resnet_eps,
|
|
resnet_act_fn=resnet_act_fn,
|
|
resnet_groups=resnet_groups,
|
|
cross_attention_dim=cross_attention_dim,
|
|
attention_head_dim=attention_head_dim,
|
|
resnet_time_scale_shift=resnet_time_scale_shift,
|
|
skip_time_act=resnet_skip_time_act,
|
|
output_scale_factor=resnet_out_scale_factor,
|
|
only_cross_attention=only_cross_attention,
|
|
cross_attention_norm=cross_attention_norm,
|
|
)
|
|
elif up_block_type == "AttnUpBlock2D":
|
|
if add_upsample is False:
|
|
upsample_type = None
|
|
else:
|
|
upsample_type = upsample_type or "conv"
|
|
|
|
return AttnUpBlock2D(
|
|
num_layers=num_layers,
|
|
in_channels=in_channels,
|
|
out_channels=out_channels,
|
|
prev_output_channel=prev_output_channel,
|
|
temb_channels=temb_channels,
|
|
resolution_idx=resolution_idx,
|
|
dropout=dropout,
|
|
resnet_eps=resnet_eps,
|
|
resnet_act_fn=resnet_act_fn,
|
|
resnet_groups=resnet_groups,
|
|
attention_head_dim=attention_head_dim,
|
|
resnet_time_scale_shift=resnet_time_scale_shift,
|
|
upsample_type=upsample_type,
|
|
)
|
|
elif up_block_type == "SkipUpBlock2D":
|
|
return SkipUpBlock2D(
|
|
num_layers=num_layers,
|
|
in_channels=in_channels,
|
|
out_channels=out_channels,
|
|
prev_output_channel=prev_output_channel,
|
|
temb_channels=temb_channels,
|
|
resolution_idx=resolution_idx,
|
|
dropout=dropout,
|
|
add_upsample=add_upsample,
|
|
resnet_eps=resnet_eps,
|
|
resnet_act_fn=resnet_act_fn,
|
|
resnet_time_scale_shift=resnet_time_scale_shift,
|
|
)
|
|
elif up_block_type == "AttnSkipUpBlock2D":
|
|
return AttnSkipUpBlock2D(
|
|
num_layers=num_layers,
|
|
in_channels=in_channels,
|
|
out_channels=out_channels,
|
|
prev_output_channel=prev_output_channel,
|
|
temb_channels=temb_channels,
|
|
resolution_idx=resolution_idx,
|
|
dropout=dropout,
|
|
add_upsample=add_upsample,
|
|
resnet_eps=resnet_eps,
|
|
resnet_act_fn=resnet_act_fn,
|
|
attention_head_dim=attention_head_dim,
|
|
resnet_time_scale_shift=resnet_time_scale_shift,
|
|
)
|
|
elif up_block_type == "UpDecoderBlock2D":
|
|
return UpDecoderBlock2D(
|
|
num_layers=num_layers,
|
|
in_channels=in_channels,
|
|
out_channels=out_channels,
|
|
resolution_idx=resolution_idx,
|
|
dropout=dropout,
|
|
add_upsample=add_upsample,
|
|
resnet_eps=resnet_eps,
|
|
resnet_act_fn=resnet_act_fn,
|
|
resnet_groups=resnet_groups,
|
|
resnet_time_scale_shift=resnet_time_scale_shift,
|
|
temb_channels=temb_channels,
|
|
)
|
|
elif up_block_type == "AttnUpDecoderBlock2D":
|
|
return AttnUpDecoderBlock2D(
|
|
num_layers=num_layers,
|
|
in_channels=in_channels,
|
|
out_channels=out_channels,
|
|
resolution_idx=resolution_idx,
|
|
dropout=dropout,
|
|
add_upsample=add_upsample,
|
|
resnet_eps=resnet_eps,
|
|
resnet_act_fn=resnet_act_fn,
|
|
resnet_groups=resnet_groups,
|
|
attention_head_dim=attention_head_dim,
|
|
resnet_time_scale_shift=resnet_time_scale_shift,
|
|
temb_channels=temb_channels,
|
|
)
|
|
elif up_block_type == "KUpBlock2D":
|
|
return KUpBlock2D(
|
|
num_layers=num_layers,
|
|
in_channels=in_channels,
|
|
out_channels=out_channels,
|
|
temb_channels=temb_channels,
|
|
resolution_idx=resolution_idx,
|
|
dropout=dropout,
|
|
add_upsample=add_upsample,
|
|
resnet_eps=resnet_eps,
|
|
resnet_act_fn=resnet_act_fn,
|
|
)
|
|
elif up_block_type == "KCrossAttnUpBlock2D":
|
|
return KCrossAttnUpBlock2D(
|
|
num_layers=num_layers,
|
|
in_channels=in_channels,
|
|
out_channels=out_channels,
|
|
temb_channels=temb_channels,
|
|
resolution_idx=resolution_idx,
|
|
dropout=dropout,
|
|
add_upsample=add_upsample,
|
|
resnet_eps=resnet_eps,
|
|
resnet_act_fn=resnet_act_fn,
|
|
cross_attention_dim=cross_attention_dim,
|
|
attention_head_dim=attention_head_dim,
|
|
)
|
|
|
|
raise ValueError(f"{up_block_type} does not exist.")
|
|
|
|
|
|
class AutoencoderTinyBlock(nn.Module):
|
|
"""
|
|
Tiny Autoencoder block used in [`AutoencoderTiny`]. It is a mini residual module consisting of plain conv + ReLU
|
|
blocks.
|
|
|
|
Args:
|
|
in_channels (`int`): The number of input channels.
|
|
out_channels (`int`): The number of output channels.
|
|
act_fn (`str`):
|
|
` The activation function to use. Supported values are `"swish"`, `"mish"`, `"gelu"`, and `"relu"`.
|
|
|
|
Returns:
|
|
`torch.FloatTensor`: A tensor with the same shape as the input tensor, but with the number of channels equal to
|
|
`out_channels`.
|
|
"""
|
|
|
|
def __init__(self, in_channels: int, out_channels: int, act_fn: str):
|
|
super().__init__()
|
|
act_fn = get_activation(act_fn)
|
|
self.conv = nn.Sequential(
|
|
nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1),
|
|
act_fn,
|
|
nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),
|
|
act_fn,
|
|
nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),
|
|
)
|
|
self.skip = (
|
|
nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False)
|
|
if in_channels != out_channels
|
|
else nn.Identity()
|
|
)
|
|
self.fuse = nn.ReLU()
|
|
|
|
def forward(self, x: torch.FloatTensor) -> torch.FloatTensor:
|
|
return self.fuse(self.conv(x) + self.skip(x))
|
|
|
|
|
|
class UNetMidBlock2D(nn.Module):
|
|
"""
|
|
A 2D UNet mid-block [`UNetMidBlock2D`] with multiple residual blocks and optional attention blocks.
|
|
|
|
Args:
|
|
in_channels (`int`): The number of input channels.
|
|
temb_channels (`int`): The number of temporal embedding channels.
|
|
dropout (`float`, *optional*, defaults to 0.0): The dropout rate.
|
|
num_layers (`int`, *optional*, defaults to 1): The number of residual blocks.
|
|
resnet_eps (`float`, *optional*, 1e-6 ): The epsilon value for the resnet blocks.
|
|
resnet_time_scale_shift (`str`, *optional*, defaults to `default`):
|
|
The type of normalization to apply to the time embeddings. This can help to improve the performance of the
|
|
model on tasks with long-range temporal dependencies.
|
|
resnet_act_fn (`str`, *optional*, defaults to `swish`): The activation function for the resnet blocks.
|
|
resnet_groups (`int`, *optional*, defaults to 32):
|
|
The number of groups to use in the group normalization layers of the resnet blocks.
|
|
attn_groups (`Optional[int]`, *optional*, defaults to None): The number of groups for the attention blocks.
|
|
resnet_pre_norm (`bool`, *optional*, defaults to `True`):
|
|
Whether to use pre-normalization for the resnet blocks.
|
|
add_attention (`bool`, *optional*, defaults to `True`): Whether to add attention blocks.
|
|
attention_head_dim (`int`, *optional*, defaults to 1):
|
|
Dimension of a single attention head. The number of attention heads is determined based on this value and
|
|
the number of input channels.
|
|
output_scale_factor (`float`, *optional*, defaults to 1.0): The output scale factor.
|
|
|
|
Returns:
|
|
`torch.FloatTensor`: The output of the last residual block, which is a tensor of shape `(batch_size,
|
|
in_channels, height, width)`.
|
|
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
in_channels: int,
|
|
temb_channels: int,
|
|
dropout: float = 0.0,
|
|
num_layers: int = 1,
|
|
resnet_eps: float = 1e-6,
|
|
resnet_time_scale_shift: str = "default",
|
|
resnet_act_fn: str = "swish",
|
|
resnet_groups: int = 32,
|
|
attn_groups: Optional[int] = None,
|
|
resnet_pre_norm: bool = True,
|
|
add_attention: bool = True,
|
|
attention_head_dim: int = 1,
|
|
output_scale_factor: float = 1.0,
|
|
):
|
|
super().__init__()
|
|
resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
|
|
self.add_attention = add_attention
|
|
|
|
if attn_groups is None:
|
|
attn_groups = resnet_groups if resnet_time_scale_shift == "default" else None
|
|
|
|
|
|
resnets = [
|
|
ResnetBlock2D(
|
|
in_channels=in_channels,
|
|
out_channels=in_channels,
|
|
temb_channels=temb_channels,
|
|
eps=resnet_eps,
|
|
groups=resnet_groups,
|
|
dropout=dropout,
|
|
time_embedding_norm=resnet_time_scale_shift,
|
|
non_linearity=resnet_act_fn,
|
|
output_scale_factor=output_scale_factor,
|
|
pre_norm=resnet_pre_norm,
|
|
)
|
|
]
|
|
attentions = []
|
|
|
|
if attention_head_dim is None:
|
|
logger.warn(
|
|
f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {in_channels}."
|
|
)
|
|
attention_head_dim = in_channels
|
|
|
|
for _ in range(num_layers):
|
|
if self.add_attention:
|
|
attentions.append(
|
|
Attention(
|
|
in_channels,
|
|
heads=in_channels // attention_head_dim,
|
|
dim_head=attention_head_dim,
|
|
rescale_output_factor=output_scale_factor,
|
|
eps=resnet_eps,
|
|
norm_num_groups=attn_groups,
|
|
spatial_norm_dim=temb_channels if resnet_time_scale_shift == "spatial" else None,
|
|
residual_connection=True,
|
|
bias=True,
|
|
upcast_softmax=True,
|
|
_from_deprecated_attn_block=True,
|
|
)
|
|
)
|
|
else:
|
|
attentions.append(None)
|
|
|
|
resnets.append(
|
|
ResnetBlock2D(
|
|
in_channels=in_channels,
|
|
out_channels=in_channels,
|
|
temb_channels=temb_channels,
|
|
eps=resnet_eps,
|
|
groups=resnet_groups,
|
|
dropout=dropout,
|
|
time_embedding_norm=resnet_time_scale_shift,
|
|
non_linearity=resnet_act_fn,
|
|
output_scale_factor=output_scale_factor,
|
|
pre_norm=resnet_pre_norm,
|
|
)
|
|
)
|
|
|
|
self.attentions = nn.ModuleList(attentions)
|
|
self.resnets = nn.ModuleList(resnets)
|
|
|
|
def forward(self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None) -> torch.FloatTensor:
|
|
hidden_states = self.resnets[0](hidden_states, temb)
|
|
for attn, resnet in zip(self.attentions, self.resnets[1:]):
|
|
if attn is not None:
|
|
hidden_states = attn(hidden_states, temb=temb)
|
|
hidden_states = resnet(hidden_states, temb)
|
|
|
|
return hidden_states
|
|
|
|
|
|
class UNetMidBlock2DCrossAttn(nn.Module):
|
|
def __init__(
|
|
self,
|
|
in_channels: int,
|
|
temb_channels: int,
|
|
dropout: float = 0.0,
|
|
num_layers: int = 1,
|
|
transformer_layers_per_block: Union[int, Tuple[int]] = 1,
|
|
resnet_eps: float = 1e-6,
|
|
resnet_time_scale_shift: str = "default",
|
|
resnet_act_fn: str = "swish",
|
|
resnet_groups: int = 32,
|
|
resnet_pre_norm: bool = True,
|
|
num_attention_heads: int = 1,
|
|
output_scale_factor: float = 1.0,
|
|
cross_attention_dim: int = 1280,
|
|
dual_cross_attention: bool = False,
|
|
use_linear_projection: bool = False,
|
|
upcast_attention: bool = False,
|
|
attention_type: str = "default",
|
|
):
|
|
super().__init__()
|
|
|
|
self.has_cross_attention = True
|
|
self.num_attention_heads = num_attention_heads
|
|
resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
|
|
|
|
|
|
if isinstance(transformer_layers_per_block, int):
|
|
transformer_layers_per_block = [transformer_layers_per_block] * num_layers
|
|
|
|
|
|
resnets = [
|
|
ResnetBlock2D(
|
|
in_channels=in_channels,
|
|
out_channels=in_channels,
|
|
temb_channels=temb_channels,
|
|
eps=resnet_eps,
|
|
groups=resnet_groups,
|
|
dropout=dropout,
|
|
time_embedding_norm=resnet_time_scale_shift,
|
|
non_linearity=resnet_act_fn,
|
|
output_scale_factor=output_scale_factor,
|
|
pre_norm=resnet_pre_norm,
|
|
)
|
|
]
|
|
attentions = []
|
|
|
|
for i in range(num_layers):
|
|
if not dual_cross_attention:
|
|
attentions.append(
|
|
Transformer2DModel(
|
|
num_attention_heads,
|
|
in_channels // num_attention_heads,
|
|
in_channels=in_channels,
|
|
num_layers=transformer_layers_per_block[i],
|
|
cross_attention_dim=cross_attention_dim,
|
|
norm_num_groups=resnet_groups,
|
|
use_linear_projection=use_linear_projection,
|
|
upcast_attention=upcast_attention,
|
|
attention_type=attention_type,
|
|
)
|
|
)
|
|
else:
|
|
attentions.append(
|
|
DualTransformer2DModel(
|
|
num_attention_heads,
|
|
in_channels // num_attention_heads,
|
|
in_channels=in_channels,
|
|
num_layers=1,
|
|
cross_attention_dim=cross_attention_dim,
|
|
norm_num_groups=resnet_groups,
|
|
)
|
|
)
|
|
resnets.append(
|
|
ResnetBlock2D(
|
|
in_channels=in_channels,
|
|
out_channels=in_channels,
|
|
temb_channels=temb_channels,
|
|
eps=resnet_eps,
|
|
groups=resnet_groups,
|
|
dropout=dropout,
|
|
time_embedding_norm=resnet_time_scale_shift,
|
|
non_linearity=resnet_act_fn,
|
|
output_scale_factor=output_scale_factor,
|
|
pre_norm=resnet_pre_norm,
|
|
)
|
|
)
|
|
|
|
self.attentions = nn.ModuleList(attentions)
|
|
self.resnets = nn.ModuleList(resnets)
|
|
|
|
self.gradient_checkpointing = False
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.FloatTensor,
|
|
temb: Optional[torch.FloatTensor] = None,
|
|
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
|
attention_mask: Optional[torch.FloatTensor] = None,
|
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
|
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
|
) -> torch.FloatTensor:
|
|
lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
|
|
hidden_states = self.resnets[0](hidden_states, temb, scale=lora_scale)
|
|
garment_features = []
|
|
for attn, resnet in zip(self.attentions, self.resnets[1:]):
|
|
if self.training and self.gradient_checkpointing:
|
|
|
|
def create_custom_forward(module, return_dict=None):
|
|
def custom_forward(*inputs):
|
|
if return_dict is not None:
|
|
return module(*inputs, return_dict=return_dict)
|
|
else:
|
|
return module(*inputs)
|
|
|
|
return custom_forward
|
|
|
|
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
|
|
|
hidden_states,out_garment_feat = attn(
|
|
hidden_states,
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
cross_attention_kwargs=cross_attention_kwargs,
|
|
attention_mask=attention_mask,
|
|
encoder_attention_mask=encoder_attention_mask,
|
|
return_dict=False,
|
|
)
|
|
hidden_states=hidden_states[0]
|
|
hidden_states = torch.utils.checkpoint.checkpoint(
|
|
create_custom_forward(resnet),
|
|
hidden_states,
|
|
temb,
|
|
**ckpt_kwargs,
|
|
)
|
|
else:
|
|
|
|
hidden_states,out_garment_feat = attn(
|
|
hidden_states,
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
cross_attention_kwargs=cross_attention_kwargs,
|
|
attention_mask=attention_mask,
|
|
encoder_attention_mask=encoder_attention_mask,
|
|
return_dict=False,
|
|
)
|
|
hidden_states=hidden_states[0]
|
|
hidden_states = resnet(hidden_states, temb, scale=lora_scale)
|
|
garment_features += out_garment_feat
|
|
return hidden_states,garment_features
|
|
|
|
|
|
|
|
class UNetMidBlock2DSimpleCrossAttn(nn.Module):
|
|
def __init__(
|
|
self,
|
|
in_channels: int,
|
|
temb_channels: int,
|
|
dropout: float = 0.0,
|
|
num_layers: int = 1,
|
|
resnet_eps: float = 1e-6,
|
|
resnet_time_scale_shift: str = "default",
|
|
resnet_act_fn: str = "swish",
|
|
resnet_groups: int = 32,
|
|
resnet_pre_norm: bool = True,
|
|
attention_head_dim: int = 1,
|
|
output_scale_factor: float = 1.0,
|
|
cross_attention_dim: int = 1280,
|
|
skip_time_act: bool = False,
|
|
only_cross_attention: bool = False,
|
|
cross_attention_norm: Optional[str] = None,
|
|
):
|
|
super().__init__()
|
|
|
|
self.has_cross_attention = True
|
|
|
|
self.attention_head_dim = attention_head_dim
|
|
resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
|
|
|
|
self.num_heads = in_channels // self.attention_head_dim
|
|
|
|
|
|
resnets = [
|
|
ResnetBlock2D(
|
|
in_channels=in_channels,
|
|
out_channels=in_channels,
|
|
temb_channels=temb_channels,
|
|
eps=resnet_eps,
|
|
groups=resnet_groups,
|
|
dropout=dropout,
|
|
time_embedding_norm=resnet_time_scale_shift,
|
|
non_linearity=resnet_act_fn,
|
|
output_scale_factor=output_scale_factor,
|
|
pre_norm=resnet_pre_norm,
|
|
skip_time_act=skip_time_act,
|
|
)
|
|
]
|
|
attentions = []
|
|
|
|
for _ in range(num_layers):
|
|
processor = (
|
|
AttnAddedKVProcessor2_0() if hasattr(F, "scaled_dot_product_attention") else AttnAddedKVProcessor()
|
|
)
|
|
|
|
attentions.append(
|
|
Attention(
|
|
query_dim=in_channels,
|
|
cross_attention_dim=in_channels,
|
|
heads=self.num_heads,
|
|
dim_head=self.attention_head_dim,
|
|
added_kv_proj_dim=cross_attention_dim,
|
|
norm_num_groups=resnet_groups,
|
|
bias=True,
|
|
upcast_softmax=True,
|
|
only_cross_attention=only_cross_attention,
|
|
cross_attention_norm=cross_attention_norm,
|
|
processor=processor,
|
|
)
|
|
)
|
|
resnets.append(
|
|
ResnetBlock2D(
|
|
in_channels=in_channels,
|
|
out_channels=in_channels,
|
|
temb_channels=temb_channels,
|
|
eps=resnet_eps,
|
|
groups=resnet_groups,
|
|
dropout=dropout,
|
|
time_embedding_norm=resnet_time_scale_shift,
|
|
non_linearity=resnet_act_fn,
|
|
output_scale_factor=output_scale_factor,
|
|
pre_norm=resnet_pre_norm,
|
|
skip_time_act=skip_time_act,
|
|
)
|
|
)
|
|
|
|
self.attentions = nn.ModuleList(attentions)
|
|
self.resnets = nn.ModuleList(resnets)
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.FloatTensor,
|
|
temb: Optional[torch.FloatTensor] = None,
|
|
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
|
attention_mask: Optional[torch.FloatTensor] = None,
|
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
|
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
|
) -> torch.FloatTensor:
|
|
cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
|
|
lora_scale = cross_attention_kwargs.get("scale", 1.0)
|
|
|
|
if attention_mask is None:
|
|
|
|
mask = None if encoder_hidden_states is None else encoder_attention_mask
|
|
else:
|
|
|
|
|
|
|
|
|
|
|
|
mask = attention_mask
|
|
|
|
hidden_states = self.resnets[0](hidden_states, temb, scale=lora_scale)
|
|
for attn, resnet in zip(self.attentions, self.resnets[1:]):
|
|
|
|
hidden_states = attn(
|
|
hidden_states,
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
attention_mask=mask,
|
|
**cross_attention_kwargs,
|
|
)
|
|
|
|
|
|
hidden_states = resnet(hidden_states, temb, scale=lora_scale)
|
|
|
|
return hidden_states
|
|
|
|
|
|
class AttnDownBlock2D(nn.Module):
|
|
def __init__(
|
|
self,
|
|
in_channels: int,
|
|
out_channels: int,
|
|
temb_channels: int,
|
|
dropout: float = 0.0,
|
|
num_layers: int = 1,
|
|
resnet_eps: float = 1e-6,
|
|
resnet_time_scale_shift: str = "default",
|
|
resnet_act_fn: str = "swish",
|
|
resnet_groups: int = 32,
|
|
resnet_pre_norm: bool = True,
|
|
attention_head_dim: int = 1,
|
|
output_scale_factor: float = 1.0,
|
|
downsample_padding: int = 1,
|
|
downsample_type: str = "conv",
|
|
):
|
|
super().__init__()
|
|
resnets = []
|
|
attentions = []
|
|
self.downsample_type = downsample_type
|
|
|
|
if attention_head_dim is None:
|
|
logger.warn(
|
|
f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {out_channels}."
|
|
)
|
|
attention_head_dim = out_channels
|
|
|
|
for i in range(num_layers):
|
|
in_channels = in_channels if i == 0 else out_channels
|
|
resnets.append(
|
|
ResnetBlock2D(
|
|
in_channels=in_channels,
|
|
out_channels=out_channels,
|
|
temb_channels=temb_channels,
|
|
eps=resnet_eps,
|
|
groups=resnet_groups,
|
|
dropout=dropout,
|
|
time_embedding_norm=resnet_time_scale_shift,
|
|
non_linearity=resnet_act_fn,
|
|
output_scale_factor=output_scale_factor,
|
|
pre_norm=resnet_pre_norm,
|
|
)
|
|
)
|
|
attentions.append(
|
|
Attention(
|
|
out_channels,
|
|
heads=out_channels // attention_head_dim,
|
|
dim_head=attention_head_dim,
|
|
rescale_output_factor=output_scale_factor,
|
|
eps=resnet_eps,
|
|
norm_num_groups=resnet_groups,
|
|
residual_connection=True,
|
|
bias=True,
|
|
upcast_softmax=True,
|
|
_from_deprecated_attn_block=True,
|
|
)
|
|
)
|
|
|
|
self.attentions = nn.ModuleList(attentions)
|
|
self.resnets = nn.ModuleList(resnets)
|
|
|
|
if downsample_type == "conv":
|
|
self.downsamplers = nn.ModuleList(
|
|
[
|
|
Downsample2D(
|
|
out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
|
|
)
|
|
]
|
|
)
|
|
elif downsample_type == "resnet":
|
|
self.downsamplers = nn.ModuleList(
|
|
[
|
|
ResnetBlock2D(
|
|
in_channels=out_channels,
|
|
out_channels=out_channels,
|
|
temb_channels=temb_channels,
|
|
eps=resnet_eps,
|
|
groups=resnet_groups,
|
|
dropout=dropout,
|
|
time_embedding_norm=resnet_time_scale_shift,
|
|
non_linearity=resnet_act_fn,
|
|
output_scale_factor=output_scale_factor,
|
|
pre_norm=resnet_pre_norm,
|
|
down=True,
|
|
)
|
|
]
|
|
)
|
|
else:
|
|
self.downsamplers = None
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.FloatTensor,
|
|
temb: Optional[torch.FloatTensor] = None,
|
|
upsample_size: Optional[int] = None,
|
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
|
) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]:
|
|
cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
|
|
|
|
lora_scale = cross_attention_kwargs.get("scale", 1.0)
|
|
|
|
output_states = ()
|
|
|
|
for resnet, attn in zip(self.resnets, self.attentions):
|
|
cross_attention_kwargs.update({"scale": lora_scale})
|
|
hidden_states = resnet(hidden_states, temb, scale=lora_scale)
|
|
hidden_states = attn(hidden_states, **cross_attention_kwargs)
|
|
output_states = output_states + (hidden_states,)
|
|
|
|
if self.downsamplers is not None:
|
|
for downsampler in self.downsamplers:
|
|
if self.downsample_type == "resnet":
|
|
hidden_states = downsampler(hidden_states, temb=temb, scale=lora_scale)
|
|
else:
|
|
hidden_states = downsampler(hidden_states, scale=lora_scale)
|
|
|
|
output_states += (hidden_states,)
|
|
|
|
return hidden_states, output_states
|
|
|
|
|
|
class CrossAttnDownBlock2D(nn.Module):
|
|
def __init__(
|
|
self,
|
|
in_channels: int,
|
|
out_channels: int,
|
|
temb_channels: int,
|
|
dropout: float = 0.0,
|
|
num_layers: int = 1,
|
|
transformer_layers_per_block: Union[int, Tuple[int]] = 1,
|
|
resnet_eps: float = 1e-6,
|
|
resnet_time_scale_shift: str = "default",
|
|
resnet_act_fn: str = "swish",
|
|
resnet_groups: int = 32,
|
|
resnet_pre_norm: bool = True,
|
|
num_attention_heads: int = 1,
|
|
cross_attention_dim: int = 1280,
|
|
output_scale_factor: float = 1.0,
|
|
downsample_padding: int = 1,
|
|
add_downsample: bool = True,
|
|
dual_cross_attention: bool = False,
|
|
use_linear_projection: bool = False,
|
|
only_cross_attention: bool = False,
|
|
upcast_attention: bool = False,
|
|
attention_type: str = "default",
|
|
):
|
|
super().__init__()
|
|
resnets = []
|
|
attentions = []
|
|
|
|
self.has_cross_attention = True
|
|
self.num_attention_heads = num_attention_heads
|
|
if isinstance(transformer_layers_per_block, int):
|
|
transformer_layers_per_block = [transformer_layers_per_block] * num_layers
|
|
|
|
for i in range(num_layers):
|
|
in_channels = in_channels if i == 0 else out_channels
|
|
resnets.append(
|
|
ResnetBlock2D(
|
|
in_channels=in_channels,
|
|
out_channels=out_channels,
|
|
temb_channels=temb_channels,
|
|
eps=resnet_eps,
|
|
groups=resnet_groups,
|
|
dropout=dropout,
|
|
time_embedding_norm=resnet_time_scale_shift,
|
|
non_linearity=resnet_act_fn,
|
|
output_scale_factor=output_scale_factor,
|
|
pre_norm=resnet_pre_norm,
|
|
)
|
|
)
|
|
if not dual_cross_attention:
|
|
attentions.append(
|
|
Transformer2DModel(
|
|
num_attention_heads,
|
|
out_channels // num_attention_heads,
|
|
in_channels=out_channels,
|
|
num_layers=transformer_layers_per_block[i],
|
|
cross_attention_dim=cross_attention_dim,
|
|
norm_num_groups=resnet_groups,
|
|
use_linear_projection=use_linear_projection,
|
|
only_cross_attention=only_cross_attention,
|
|
upcast_attention=upcast_attention,
|
|
attention_type=attention_type,
|
|
)
|
|
)
|
|
else:
|
|
attentions.append(
|
|
DualTransformer2DModel(
|
|
num_attention_heads,
|
|
out_channels // num_attention_heads,
|
|
in_channels=out_channels,
|
|
num_layers=1,
|
|
cross_attention_dim=cross_attention_dim,
|
|
norm_num_groups=resnet_groups,
|
|
)
|
|
)
|
|
self.attentions = nn.ModuleList(attentions)
|
|
self.resnets = nn.ModuleList(resnets)
|
|
|
|
if add_downsample:
|
|
self.downsamplers = nn.ModuleList(
|
|
[
|
|
Downsample2D(
|
|
out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
|
|
)
|
|
]
|
|
)
|
|
else:
|
|
self.downsamplers = None
|
|
|
|
self.gradient_checkpointing = False
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.FloatTensor,
|
|
temb: Optional[torch.FloatTensor] = None,
|
|
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
|
attention_mask: Optional[torch.FloatTensor] = None,
|
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
|
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
|
additional_residuals: Optional[torch.FloatTensor] = None,
|
|
) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]:
|
|
output_states = ()
|
|
|
|
lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
|
|
|
|
blocks = list(zip(self.resnets, self.attentions))
|
|
garment_features = []
|
|
for i, (resnet, attn) in enumerate(blocks):
|
|
if self.training and self.gradient_checkpointing:
|
|
|
|
def create_custom_forward(module, return_dict=None):
|
|
def custom_forward(*inputs):
|
|
if return_dict is not None:
|
|
return module(*inputs, return_dict=return_dict)
|
|
else:
|
|
return module(*inputs)
|
|
|
|
return custom_forward
|
|
|
|
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
|
hidden_states = torch.utils.checkpoint.checkpoint(
|
|
create_custom_forward(resnet),
|
|
hidden_states,
|
|
temb,
|
|
**ckpt_kwargs,
|
|
)
|
|
hidden_states,out_garment_feat = attn(
|
|
hidden_states,
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
cross_attention_kwargs=cross_attention_kwargs,
|
|
attention_mask=attention_mask,
|
|
encoder_attention_mask=encoder_attention_mask,
|
|
return_dict=False,
|
|
)
|
|
hidden_states=hidden_states[0]
|
|
else:
|
|
hidden_states = resnet(hidden_states, temb, scale=lora_scale)
|
|
hidden_states,out_garment_feat = attn(
|
|
hidden_states,
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
cross_attention_kwargs=cross_attention_kwargs,
|
|
attention_mask=attention_mask,
|
|
encoder_attention_mask=encoder_attention_mask,
|
|
return_dict=False,
|
|
)
|
|
hidden_states=hidden_states[0]
|
|
garment_features += out_garment_feat
|
|
|
|
if i == len(blocks) - 1 and additional_residuals is not None:
|
|
hidden_states = hidden_states + additional_residuals
|
|
|
|
output_states = output_states + (hidden_states,)
|
|
|
|
if self.downsamplers is not None:
|
|
for downsampler in self.downsamplers:
|
|
hidden_states = downsampler(hidden_states, scale=lora_scale)
|
|
|
|
output_states = output_states + (hidden_states,)
|
|
|
|
return hidden_states, output_states,garment_features
|
|
|
|
|
|
class DownBlock2D(nn.Module):
|
|
def __init__(
|
|
self,
|
|
in_channels: int,
|
|
out_channels: int,
|
|
temb_channels: int,
|
|
dropout: float = 0.0,
|
|
num_layers: int = 1,
|
|
resnet_eps: float = 1e-6,
|
|
resnet_time_scale_shift: str = "default",
|
|
resnet_act_fn: str = "swish",
|
|
resnet_groups: int = 32,
|
|
resnet_pre_norm: bool = True,
|
|
output_scale_factor: float = 1.0,
|
|
add_downsample: bool = True,
|
|
downsample_padding: int = 1,
|
|
):
|
|
super().__init__()
|
|
resnets = []
|
|
|
|
for i in range(num_layers):
|
|
in_channels = in_channels if i == 0 else out_channels
|
|
resnets.append(
|
|
ResnetBlock2D(
|
|
in_channels=in_channels,
|
|
out_channels=out_channels,
|
|
temb_channels=temb_channels,
|
|
eps=resnet_eps,
|
|
groups=resnet_groups,
|
|
dropout=dropout,
|
|
time_embedding_norm=resnet_time_scale_shift,
|
|
non_linearity=resnet_act_fn,
|
|
output_scale_factor=output_scale_factor,
|
|
pre_norm=resnet_pre_norm,
|
|
)
|
|
)
|
|
|
|
self.resnets = nn.ModuleList(resnets)
|
|
|
|
if add_downsample:
|
|
self.downsamplers = nn.ModuleList(
|
|
[
|
|
Downsample2D(
|
|
out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
|
|
)
|
|
]
|
|
)
|
|
else:
|
|
self.downsamplers = None
|
|
|
|
self.gradient_checkpointing = False
|
|
|
|
def forward(
|
|
self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None, scale: float = 1.0
|
|
) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]:
|
|
output_states = ()
|
|
|
|
for resnet in self.resnets:
|
|
if self.training and self.gradient_checkpointing:
|
|
|
|
def create_custom_forward(module):
|
|
def custom_forward(*inputs):
|
|
return module(*inputs)
|
|
|
|
return custom_forward
|
|
|
|
if is_torch_version(">=", "1.11.0"):
|
|
hidden_states = torch.utils.checkpoint.checkpoint(
|
|
create_custom_forward(resnet), hidden_states, temb, use_reentrant=False
|
|
)
|
|
else:
|
|
hidden_states = torch.utils.checkpoint.checkpoint(
|
|
create_custom_forward(resnet), hidden_states, temb
|
|
)
|
|
else:
|
|
hidden_states = resnet(hidden_states, temb, scale=scale)
|
|
|
|
output_states = output_states + (hidden_states,)
|
|
|
|
if self.downsamplers is not None:
|
|
for downsampler in self.downsamplers:
|
|
hidden_states = downsampler(hidden_states, scale=scale)
|
|
|
|
output_states = output_states + (hidden_states,)
|
|
|
|
return hidden_states, output_states
|
|
|
|
|
|
class DownEncoderBlock2D(nn.Module):
|
|
def __init__(
|
|
self,
|
|
in_channels: int,
|
|
out_channels: int,
|
|
dropout: float = 0.0,
|
|
num_layers: int = 1,
|
|
resnet_eps: float = 1e-6,
|
|
resnet_time_scale_shift: str = "default",
|
|
resnet_act_fn: str = "swish",
|
|
resnet_groups: int = 32,
|
|
resnet_pre_norm: bool = True,
|
|
output_scale_factor: float = 1.0,
|
|
add_downsample: bool = True,
|
|
downsample_padding: int = 1,
|
|
):
|
|
super().__init__()
|
|
resnets = []
|
|
|
|
for i in range(num_layers):
|
|
in_channels = in_channels if i == 0 else out_channels
|
|
resnets.append(
|
|
ResnetBlock2D(
|
|
in_channels=in_channels,
|
|
out_channels=out_channels,
|
|
temb_channels=None,
|
|
eps=resnet_eps,
|
|
groups=resnet_groups,
|
|
dropout=dropout,
|
|
time_embedding_norm=resnet_time_scale_shift,
|
|
non_linearity=resnet_act_fn,
|
|
output_scale_factor=output_scale_factor,
|
|
pre_norm=resnet_pre_norm,
|
|
)
|
|
)
|
|
|
|
self.resnets = nn.ModuleList(resnets)
|
|
|
|
if add_downsample:
|
|
self.downsamplers = nn.ModuleList(
|
|
[
|
|
Downsample2D(
|
|
out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
|
|
)
|
|
]
|
|
)
|
|
else:
|
|
self.downsamplers = None
|
|
|
|
def forward(self, hidden_states: torch.FloatTensor, scale: float = 1.0) -> torch.FloatTensor:
|
|
for resnet in self.resnets:
|
|
hidden_states = resnet(hidden_states, temb=None, scale=scale)
|
|
|
|
if self.downsamplers is not None:
|
|
for downsampler in self.downsamplers:
|
|
hidden_states = downsampler(hidden_states, scale)
|
|
|
|
return hidden_states
|
|
|
|
|
|
class AttnDownEncoderBlock2D(nn.Module):
|
|
def __init__(
|
|
self,
|
|
in_channels: int,
|
|
out_channels: int,
|
|
dropout: float = 0.0,
|
|
num_layers: int = 1,
|
|
resnet_eps: float = 1e-6,
|
|
resnet_time_scale_shift: str = "default",
|
|
resnet_act_fn: str = "swish",
|
|
resnet_groups: int = 32,
|
|
resnet_pre_norm: bool = True,
|
|
attention_head_dim: int = 1,
|
|
output_scale_factor: float = 1.0,
|
|
add_downsample: bool = True,
|
|
downsample_padding: int = 1,
|
|
):
|
|
super().__init__()
|
|
resnets = []
|
|
attentions = []
|
|
|
|
if attention_head_dim is None:
|
|
logger.warn(
|
|
f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {out_channels}."
|
|
)
|
|
attention_head_dim = out_channels
|
|
|
|
for i in range(num_layers):
|
|
in_channels = in_channels if i == 0 else out_channels
|
|
resnets.append(
|
|
ResnetBlock2D(
|
|
in_channels=in_channels,
|
|
out_channels=out_channels,
|
|
temb_channels=None,
|
|
eps=resnet_eps,
|
|
groups=resnet_groups,
|
|
dropout=dropout,
|
|
time_embedding_norm=resnet_time_scale_shift,
|
|
non_linearity=resnet_act_fn,
|
|
output_scale_factor=output_scale_factor,
|
|
pre_norm=resnet_pre_norm,
|
|
)
|
|
)
|
|
attentions.append(
|
|
Attention(
|
|
out_channels,
|
|
heads=out_channels // attention_head_dim,
|
|
dim_head=attention_head_dim,
|
|
rescale_output_factor=output_scale_factor,
|
|
eps=resnet_eps,
|
|
norm_num_groups=resnet_groups,
|
|
residual_connection=True,
|
|
bias=True,
|
|
upcast_softmax=True,
|
|
_from_deprecated_attn_block=True,
|
|
)
|
|
)
|
|
|
|
self.attentions = nn.ModuleList(attentions)
|
|
self.resnets = nn.ModuleList(resnets)
|
|
|
|
if add_downsample:
|
|
self.downsamplers = nn.ModuleList(
|
|
[
|
|
Downsample2D(
|
|
out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
|
|
)
|
|
]
|
|
)
|
|
else:
|
|
self.downsamplers = None
|
|
|
|
def forward(self, hidden_states: torch.FloatTensor, scale: float = 1.0) -> torch.FloatTensor:
|
|
for resnet, attn in zip(self.resnets, self.attentions):
|
|
hidden_states = resnet(hidden_states, temb=None, scale=scale)
|
|
cross_attention_kwargs = {"scale": scale}
|
|
hidden_states = attn(hidden_states, **cross_attention_kwargs)
|
|
|
|
if self.downsamplers is not None:
|
|
for downsampler in self.downsamplers:
|
|
hidden_states = downsampler(hidden_states, scale)
|
|
|
|
return hidden_states
|
|
|
|
|
|
class AttnSkipDownBlock2D(nn.Module):
|
|
def __init__(
|
|
self,
|
|
in_channels: int,
|
|
out_channels: int,
|
|
temb_channels: int,
|
|
dropout: float = 0.0,
|
|
num_layers: int = 1,
|
|
resnet_eps: float = 1e-6,
|
|
resnet_time_scale_shift: str = "default",
|
|
resnet_act_fn: str = "swish",
|
|
resnet_pre_norm: bool = True,
|
|
attention_head_dim: int = 1,
|
|
output_scale_factor: float = np.sqrt(2.0),
|
|
add_downsample: bool = True,
|
|
):
|
|
super().__init__()
|
|
self.attentions = nn.ModuleList([])
|
|
self.resnets = nn.ModuleList([])
|
|
|
|
if attention_head_dim is None:
|
|
logger.warn(
|
|
f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {out_channels}."
|
|
)
|
|
attention_head_dim = out_channels
|
|
|
|
for i in range(num_layers):
|
|
in_channels = in_channels if i == 0 else out_channels
|
|
self.resnets.append(
|
|
ResnetBlock2D(
|
|
in_channels=in_channels,
|
|
out_channels=out_channels,
|
|
temb_channels=temb_channels,
|
|
eps=resnet_eps,
|
|
groups=min(in_channels // 4, 32),
|
|
groups_out=min(out_channels // 4, 32),
|
|
dropout=dropout,
|
|
time_embedding_norm=resnet_time_scale_shift,
|
|
non_linearity=resnet_act_fn,
|
|
output_scale_factor=output_scale_factor,
|
|
pre_norm=resnet_pre_norm,
|
|
)
|
|
)
|
|
self.attentions.append(
|
|
Attention(
|
|
out_channels,
|
|
heads=out_channels // attention_head_dim,
|
|
dim_head=attention_head_dim,
|
|
rescale_output_factor=output_scale_factor,
|
|
eps=resnet_eps,
|
|
norm_num_groups=32,
|
|
residual_connection=True,
|
|
bias=True,
|
|
upcast_softmax=True,
|
|
_from_deprecated_attn_block=True,
|
|
)
|
|
)
|
|
|
|
if add_downsample:
|
|
self.resnet_down = ResnetBlock2D(
|
|
in_channels=out_channels,
|
|
out_channels=out_channels,
|
|
temb_channels=temb_channels,
|
|
eps=resnet_eps,
|
|
groups=min(out_channels // 4, 32),
|
|
dropout=dropout,
|
|
time_embedding_norm=resnet_time_scale_shift,
|
|
non_linearity=resnet_act_fn,
|
|
output_scale_factor=output_scale_factor,
|
|
pre_norm=resnet_pre_norm,
|
|
use_in_shortcut=True,
|
|
down=True,
|
|
kernel="fir",
|
|
)
|
|
self.downsamplers = nn.ModuleList([FirDownsample2D(out_channels, out_channels=out_channels)])
|
|
self.skip_conv = nn.Conv2d(3, out_channels, kernel_size=(1, 1), stride=(1, 1))
|
|
else:
|
|
self.resnet_down = None
|
|
self.downsamplers = None
|
|
self.skip_conv = None
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.FloatTensor,
|
|
temb: Optional[torch.FloatTensor] = None,
|
|
skip_sample: Optional[torch.FloatTensor] = None,
|
|
scale: float = 1.0,
|
|
) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...], torch.FloatTensor]:
|
|
output_states = ()
|
|
|
|
for resnet, attn in zip(self.resnets, self.attentions):
|
|
hidden_states = resnet(hidden_states, temb, scale=scale)
|
|
cross_attention_kwargs = {"scale": scale}
|
|
hidden_states = attn(hidden_states, **cross_attention_kwargs)
|
|
output_states += (hidden_states,)
|
|
|
|
if self.downsamplers is not None:
|
|
hidden_states = self.resnet_down(hidden_states, temb, scale=scale)
|
|
for downsampler in self.downsamplers:
|
|
skip_sample = downsampler(skip_sample)
|
|
|
|
hidden_states = self.skip_conv(skip_sample) + hidden_states
|
|
|
|
output_states += (hidden_states,)
|
|
|
|
return hidden_states, output_states, skip_sample
|
|
|
|
|
|
class SkipDownBlock2D(nn.Module):
|
|
def __init__(
|
|
self,
|
|
in_channels: int,
|
|
out_channels: int,
|
|
temb_channels: int,
|
|
dropout: float = 0.0,
|
|
num_layers: int = 1,
|
|
resnet_eps: float = 1e-6,
|
|
resnet_time_scale_shift: str = "default",
|
|
resnet_act_fn: str = "swish",
|
|
resnet_pre_norm: bool = True,
|
|
output_scale_factor: float = np.sqrt(2.0),
|
|
add_downsample: bool = True,
|
|
downsample_padding: int = 1,
|
|
):
|
|
super().__init__()
|
|
self.resnets = nn.ModuleList([])
|
|
|
|
for i in range(num_layers):
|
|
in_channels = in_channels if i == 0 else out_channels
|
|
self.resnets.append(
|
|
ResnetBlock2D(
|
|
in_channels=in_channels,
|
|
out_channels=out_channels,
|
|
temb_channels=temb_channels,
|
|
eps=resnet_eps,
|
|
groups=min(in_channels // 4, 32),
|
|
groups_out=min(out_channels // 4, 32),
|
|
dropout=dropout,
|
|
time_embedding_norm=resnet_time_scale_shift,
|
|
non_linearity=resnet_act_fn,
|
|
output_scale_factor=output_scale_factor,
|
|
pre_norm=resnet_pre_norm,
|
|
)
|
|
)
|
|
|
|
if add_downsample:
|
|
self.resnet_down = ResnetBlock2D(
|
|
in_channels=out_channels,
|
|
out_channels=out_channels,
|
|
temb_channels=temb_channels,
|
|
eps=resnet_eps,
|
|
groups=min(out_channels // 4, 32),
|
|
dropout=dropout,
|
|
time_embedding_norm=resnet_time_scale_shift,
|
|
non_linearity=resnet_act_fn,
|
|
output_scale_factor=output_scale_factor,
|
|
pre_norm=resnet_pre_norm,
|
|
use_in_shortcut=True,
|
|
down=True,
|
|
kernel="fir",
|
|
)
|
|
self.downsamplers = nn.ModuleList([FirDownsample2D(out_channels, out_channels=out_channels)])
|
|
self.skip_conv = nn.Conv2d(3, out_channels, kernel_size=(1, 1), stride=(1, 1))
|
|
else:
|
|
self.resnet_down = None
|
|
self.downsamplers = None
|
|
self.skip_conv = None
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.FloatTensor,
|
|
temb: Optional[torch.FloatTensor] = None,
|
|
skip_sample: Optional[torch.FloatTensor] = None,
|
|
scale: float = 1.0,
|
|
) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...], torch.FloatTensor]:
|
|
output_states = ()
|
|
|
|
for resnet in self.resnets:
|
|
hidden_states = resnet(hidden_states, temb, scale)
|
|
output_states += (hidden_states,)
|
|
|
|
if self.downsamplers is not None:
|
|
hidden_states = self.resnet_down(hidden_states, temb, scale)
|
|
for downsampler in self.downsamplers:
|
|
skip_sample = downsampler(skip_sample)
|
|
|
|
hidden_states = self.skip_conv(skip_sample) + hidden_states
|
|
|
|
output_states += (hidden_states,)
|
|
|
|
return hidden_states, output_states, skip_sample
|
|
|
|
|
|
class ResnetDownsampleBlock2D(nn.Module):
|
|
def __init__(
|
|
self,
|
|
in_channels: int,
|
|
out_channels: int,
|
|
temb_channels: int,
|
|
dropout: float = 0.0,
|
|
num_layers: int = 1,
|
|
resnet_eps: float = 1e-6,
|
|
resnet_time_scale_shift: str = "default",
|
|
resnet_act_fn: str = "swish",
|
|
resnet_groups: int = 32,
|
|
resnet_pre_norm: bool = True,
|
|
output_scale_factor: float = 1.0,
|
|
add_downsample: bool = True,
|
|
skip_time_act: bool = False,
|
|
):
|
|
super().__init__()
|
|
resnets = []
|
|
|
|
for i in range(num_layers):
|
|
in_channels = in_channels if i == 0 else out_channels
|
|
resnets.append(
|
|
ResnetBlock2D(
|
|
in_channels=in_channels,
|
|
out_channels=out_channels,
|
|
temb_channels=temb_channels,
|
|
eps=resnet_eps,
|
|
groups=resnet_groups,
|
|
dropout=dropout,
|
|
time_embedding_norm=resnet_time_scale_shift,
|
|
non_linearity=resnet_act_fn,
|
|
output_scale_factor=output_scale_factor,
|
|
pre_norm=resnet_pre_norm,
|
|
skip_time_act=skip_time_act,
|
|
)
|
|
)
|
|
|
|
self.resnets = nn.ModuleList(resnets)
|
|
|
|
if add_downsample:
|
|
self.downsamplers = nn.ModuleList(
|
|
[
|
|
ResnetBlock2D(
|
|
in_channels=out_channels,
|
|
out_channels=out_channels,
|
|
temb_channels=temb_channels,
|
|
eps=resnet_eps,
|
|
groups=resnet_groups,
|
|
dropout=dropout,
|
|
time_embedding_norm=resnet_time_scale_shift,
|
|
non_linearity=resnet_act_fn,
|
|
output_scale_factor=output_scale_factor,
|
|
pre_norm=resnet_pre_norm,
|
|
skip_time_act=skip_time_act,
|
|
down=True,
|
|
)
|
|
]
|
|
)
|
|
else:
|
|
self.downsamplers = None
|
|
|
|
self.gradient_checkpointing = False
|
|
|
|
def forward(
|
|
self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None, scale: float = 1.0
|
|
) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]:
|
|
output_states = ()
|
|
|
|
for resnet in self.resnets:
|
|
if self.training and self.gradient_checkpointing:
|
|
|
|
def create_custom_forward(module):
|
|
def custom_forward(*inputs):
|
|
return module(*inputs)
|
|
|
|
return custom_forward
|
|
|
|
if is_torch_version(">=", "1.11.0"):
|
|
hidden_states = torch.utils.checkpoint.checkpoint(
|
|
create_custom_forward(resnet), hidden_states, temb, use_reentrant=False
|
|
)
|
|
else:
|
|
hidden_states = torch.utils.checkpoint.checkpoint(
|
|
create_custom_forward(resnet), hidden_states, temb
|
|
)
|
|
else:
|
|
hidden_states = resnet(hidden_states, temb, scale)
|
|
|
|
output_states = output_states + (hidden_states,)
|
|
|
|
if self.downsamplers is not None:
|
|
for downsampler in self.downsamplers:
|
|
hidden_states = downsampler(hidden_states, temb, scale)
|
|
|
|
output_states = output_states + (hidden_states,)
|
|
|
|
return hidden_states, output_states
|
|
|
|
|
|
class SimpleCrossAttnDownBlock2D(nn.Module):
|
|
def __init__(
|
|
self,
|
|
in_channels: int,
|
|
out_channels: int,
|
|
temb_channels: int,
|
|
dropout: float = 0.0,
|
|
num_layers: int = 1,
|
|
resnet_eps: float = 1e-6,
|
|
resnet_time_scale_shift: str = "default",
|
|
resnet_act_fn: str = "swish",
|
|
resnet_groups: int = 32,
|
|
resnet_pre_norm: bool = True,
|
|
attention_head_dim: int = 1,
|
|
cross_attention_dim: int = 1280,
|
|
output_scale_factor: float = 1.0,
|
|
add_downsample: bool = True,
|
|
skip_time_act: bool = False,
|
|
only_cross_attention: bool = False,
|
|
cross_attention_norm: Optional[str] = None,
|
|
):
|
|
super().__init__()
|
|
|
|
self.has_cross_attention = True
|
|
|
|
resnets = []
|
|
attentions = []
|
|
|
|
self.attention_head_dim = attention_head_dim
|
|
self.num_heads = out_channels // self.attention_head_dim
|
|
|
|
for i in range(num_layers):
|
|
in_channels = in_channels if i == 0 else out_channels
|
|
resnets.append(
|
|
ResnetBlock2D(
|
|
in_channels=in_channels,
|
|
out_channels=out_channels,
|
|
temb_channels=temb_channels,
|
|
eps=resnet_eps,
|
|
groups=resnet_groups,
|
|
dropout=dropout,
|
|
time_embedding_norm=resnet_time_scale_shift,
|
|
non_linearity=resnet_act_fn,
|
|
output_scale_factor=output_scale_factor,
|
|
pre_norm=resnet_pre_norm,
|
|
skip_time_act=skip_time_act,
|
|
)
|
|
)
|
|
|
|
processor = (
|
|
AttnAddedKVProcessor2_0() if hasattr(F, "scaled_dot_product_attention") else AttnAddedKVProcessor()
|
|
)
|
|
|
|
attentions.append(
|
|
Attention(
|
|
query_dim=out_channels,
|
|
cross_attention_dim=out_channels,
|
|
heads=self.num_heads,
|
|
dim_head=attention_head_dim,
|
|
added_kv_proj_dim=cross_attention_dim,
|
|
norm_num_groups=resnet_groups,
|
|
bias=True,
|
|
upcast_softmax=True,
|
|
only_cross_attention=only_cross_attention,
|
|
cross_attention_norm=cross_attention_norm,
|
|
processor=processor,
|
|
)
|
|
)
|
|
self.attentions = nn.ModuleList(attentions)
|
|
self.resnets = nn.ModuleList(resnets)
|
|
|
|
if add_downsample:
|
|
self.downsamplers = nn.ModuleList(
|
|
[
|
|
ResnetBlock2D(
|
|
in_channels=out_channels,
|
|
out_channels=out_channels,
|
|
temb_channels=temb_channels,
|
|
eps=resnet_eps,
|
|
groups=resnet_groups,
|
|
dropout=dropout,
|
|
time_embedding_norm=resnet_time_scale_shift,
|
|
non_linearity=resnet_act_fn,
|
|
output_scale_factor=output_scale_factor,
|
|
pre_norm=resnet_pre_norm,
|
|
skip_time_act=skip_time_act,
|
|
down=True,
|
|
)
|
|
]
|
|
)
|
|
else:
|
|
self.downsamplers = None
|
|
|
|
self.gradient_checkpointing = False
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.FloatTensor,
|
|
temb: Optional[torch.FloatTensor] = None,
|
|
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
|
attention_mask: Optional[torch.FloatTensor] = None,
|
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
|
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
|
) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]:
|
|
output_states = ()
|
|
cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
|
|
|
|
lora_scale = cross_attention_kwargs.get("scale", 1.0)
|
|
|
|
if attention_mask is None:
|
|
|
|
mask = None if encoder_hidden_states is None else encoder_attention_mask
|
|
else:
|
|
|
|
|
|
|
|
|
|
|
|
mask = attention_mask
|
|
|
|
for resnet, attn in zip(self.resnets, self.attentions):
|
|
if self.training and self.gradient_checkpointing:
|
|
|
|
def create_custom_forward(module, return_dict=None):
|
|
def custom_forward(*inputs):
|
|
if return_dict is not None:
|
|
return module(*inputs, return_dict=return_dict)
|
|
else:
|
|
return module(*inputs)
|
|
|
|
return custom_forward
|
|
|
|
hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
|
|
hidden_states = attn(
|
|
hidden_states,
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
attention_mask=mask,
|
|
**cross_attention_kwargs,
|
|
)
|
|
else:
|
|
hidden_states = resnet(hidden_states, temb, scale=lora_scale)
|
|
|
|
hidden_states = attn(
|
|
hidden_states,
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
attention_mask=mask,
|
|
**cross_attention_kwargs,
|
|
)
|
|
|
|
output_states = output_states + (hidden_states,)
|
|
|
|
if self.downsamplers is not None:
|
|
for downsampler in self.downsamplers:
|
|
hidden_states = downsampler(hidden_states, temb, scale=lora_scale)
|
|
|
|
output_states = output_states + (hidden_states,)
|
|
|
|
return hidden_states, output_states
|
|
|
|
|
|
class KDownBlock2D(nn.Module):
|
|
def __init__(
|
|
self,
|
|
in_channels: int,
|
|
out_channels: int,
|
|
temb_channels: int,
|
|
dropout: float = 0.0,
|
|
num_layers: int = 4,
|
|
resnet_eps: float = 1e-5,
|
|
resnet_act_fn: str = "gelu",
|
|
resnet_group_size: int = 32,
|
|
add_downsample: bool = False,
|
|
):
|
|
super().__init__()
|
|
resnets = []
|
|
|
|
for i in range(num_layers):
|
|
in_channels = in_channels if i == 0 else out_channels
|
|
groups = in_channels // resnet_group_size
|
|
groups_out = out_channels // resnet_group_size
|
|
|
|
resnets.append(
|
|
ResnetBlock2D(
|
|
in_channels=in_channels,
|
|
out_channels=out_channels,
|
|
dropout=dropout,
|
|
temb_channels=temb_channels,
|
|
groups=groups,
|
|
groups_out=groups_out,
|
|
eps=resnet_eps,
|
|
non_linearity=resnet_act_fn,
|
|
time_embedding_norm="ada_group",
|
|
conv_shortcut_bias=False,
|
|
)
|
|
)
|
|
|
|
self.resnets = nn.ModuleList(resnets)
|
|
|
|
if add_downsample:
|
|
|
|
self.downsamplers = nn.ModuleList([KDownsample2D()])
|
|
else:
|
|
self.downsamplers = None
|
|
|
|
self.gradient_checkpointing = False
|
|
|
|
def forward(
|
|
self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None, scale: float = 1.0
|
|
) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]:
|
|
output_states = ()
|
|
|
|
for resnet in self.resnets:
|
|
if self.training and self.gradient_checkpointing:
|
|
|
|
def create_custom_forward(module):
|
|
def custom_forward(*inputs):
|
|
return module(*inputs)
|
|
|
|
return custom_forward
|
|
|
|
if is_torch_version(">=", "1.11.0"):
|
|
hidden_states = torch.utils.checkpoint.checkpoint(
|
|
create_custom_forward(resnet), hidden_states, temb, use_reentrant=False
|
|
)
|
|
else:
|
|
hidden_states = torch.utils.checkpoint.checkpoint(
|
|
create_custom_forward(resnet), hidden_states, temb
|
|
)
|
|
else:
|
|
hidden_states = resnet(hidden_states, temb, scale)
|
|
|
|
output_states += (hidden_states,)
|
|
|
|
if self.downsamplers is not None:
|
|
for downsampler in self.downsamplers:
|
|
hidden_states = downsampler(hidden_states)
|
|
|
|
return hidden_states, output_states
|
|
|
|
|
|
class KCrossAttnDownBlock2D(nn.Module):
|
|
def __init__(
|
|
self,
|
|
in_channels: int,
|
|
out_channels: int,
|
|
temb_channels: int,
|
|
cross_attention_dim: int,
|
|
dropout: float = 0.0,
|
|
num_layers: int = 4,
|
|
resnet_group_size: int = 32,
|
|
add_downsample: bool = True,
|
|
attention_head_dim: int = 64,
|
|
add_self_attention: bool = False,
|
|
resnet_eps: float = 1e-5,
|
|
resnet_act_fn: str = "gelu",
|
|
):
|
|
super().__init__()
|
|
resnets = []
|
|
attentions = []
|
|
|
|
self.has_cross_attention = True
|
|
|
|
for i in range(num_layers):
|
|
in_channels = in_channels if i == 0 else out_channels
|
|
groups = in_channels // resnet_group_size
|
|
groups_out = out_channels // resnet_group_size
|
|
|
|
resnets.append(
|
|
ResnetBlock2D(
|
|
in_channels=in_channels,
|
|
out_channels=out_channels,
|
|
dropout=dropout,
|
|
temb_channels=temb_channels,
|
|
groups=groups,
|
|
groups_out=groups_out,
|
|
eps=resnet_eps,
|
|
non_linearity=resnet_act_fn,
|
|
time_embedding_norm="ada_group",
|
|
conv_shortcut_bias=False,
|
|
)
|
|
)
|
|
attentions.append(
|
|
KAttentionBlock(
|
|
out_channels,
|
|
out_channels // attention_head_dim,
|
|
attention_head_dim,
|
|
cross_attention_dim=cross_attention_dim,
|
|
temb_channels=temb_channels,
|
|
attention_bias=True,
|
|
add_self_attention=add_self_attention,
|
|
cross_attention_norm="layer_norm",
|
|
group_size=resnet_group_size,
|
|
)
|
|
)
|
|
|
|
self.resnets = nn.ModuleList(resnets)
|
|
self.attentions = nn.ModuleList(attentions)
|
|
|
|
if add_downsample:
|
|
self.downsamplers = nn.ModuleList([KDownsample2D()])
|
|
else:
|
|
self.downsamplers = None
|
|
|
|
self.gradient_checkpointing = False
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.FloatTensor,
|
|
temb: Optional[torch.FloatTensor] = None,
|
|
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
|
attention_mask: Optional[torch.FloatTensor] = None,
|
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
|
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
|
) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]:
|
|
output_states = ()
|
|
lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
|
|
|
|
for resnet, attn in zip(self.resnets, self.attentions):
|
|
if self.training and self.gradient_checkpointing:
|
|
|
|
def create_custom_forward(module, return_dict=None):
|
|
def custom_forward(*inputs):
|
|
if return_dict is not None:
|
|
return module(*inputs, return_dict=return_dict)
|
|
else:
|
|
return module(*inputs)
|
|
|
|
return custom_forward
|
|
|
|
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
|
hidden_states = torch.utils.checkpoint.checkpoint(
|
|
create_custom_forward(resnet),
|
|
hidden_states,
|
|
temb,
|
|
**ckpt_kwargs,
|
|
)
|
|
hidden_states = attn(
|
|
hidden_states,
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
emb=temb,
|
|
attention_mask=attention_mask,
|
|
cross_attention_kwargs=cross_attention_kwargs,
|
|
encoder_attention_mask=encoder_attention_mask,
|
|
)
|
|
else:
|
|
hidden_states = resnet(hidden_states, temb, scale=lora_scale)
|
|
hidden_states = attn(
|
|
hidden_states,
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
emb=temb,
|
|
attention_mask=attention_mask,
|
|
cross_attention_kwargs=cross_attention_kwargs,
|
|
encoder_attention_mask=encoder_attention_mask,
|
|
)
|
|
|
|
if self.downsamplers is None:
|
|
output_states += (None,)
|
|
else:
|
|
output_states += (hidden_states,)
|
|
|
|
if self.downsamplers is not None:
|
|
for downsampler in self.downsamplers:
|
|
hidden_states = downsampler(hidden_states)
|
|
|
|
return hidden_states, output_states
|
|
|
|
|
|
class AttnUpBlock2D(nn.Module):
|
|
def __init__(
|
|
self,
|
|
in_channels: int,
|
|
prev_output_channel: int,
|
|
out_channels: int,
|
|
temb_channels: int,
|
|
resolution_idx: int = None,
|
|
dropout: float = 0.0,
|
|
num_layers: int = 1,
|
|
resnet_eps: float = 1e-6,
|
|
resnet_time_scale_shift: str = "default",
|
|
resnet_act_fn: str = "swish",
|
|
resnet_groups: int = 32,
|
|
resnet_pre_norm: bool = True,
|
|
attention_head_dim: int = 1,
|
|
output_scale_factor: float = 1.0,
|
|
upsample_type: str = "conv",
|
|
):
|
|
super().__init__()
|
|
resnets = []
|
|
attentions = []
|
|
|
|
self.upsample_type = upsample_type
|
|
|
|
if attention_head_dim is None:
|
|
logger.warn(
|
|
f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {out_channels}."
|
|
)
|
|
attention_head_dim = out_channels
|
|
|
|
for i in range(num_layers):
|
|
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
|
|
resnet_in_channels = prev_output_channel if i == 0 else out_channels
|
|
|
|
resnets.append(
|
|
ResnetBlock2D(
|
|
in_channels=resnet_in_channels + res_skip_channels,
|
|
out_channels=out_channels,
|
|
temb_channels=temb_channels,
|
|
eps=resnet_eps,
|
|
groups=resnet_groups,
|
|
dropout=dropout,
|
|
time_embedding_norm=resnet_time_scale_shift,
|
|
non_linearity=resnet_act_fn,
|
|
output_scale_factor=output_scale_factor,
|
|
pre_norm=resnet_pre_norm,
|
|
)
|
|
)
|
|
attentions.append(
|
|
Attention(
|
|
out_channels,
|
|
heads=out_channels // attention_head_dim,
|
|
dim_head=attention_head_dim,
|
|
rescale_output_factor=output_scale_factor,
|
|
eps=resnet_eps,
|
|
norm_num_groups=resnet_groups,
|
|
residual_connection=True,
|
|
bias=True,
|
|
upcast_softmax=True,
|
|
_from_deprecated_attn_block=True,
|
|
)
|
|
)
|
|
|
|
self.attentions = nn.ModuleList(attentions)
|
|
self.resnets = nn.ModuleList(resnets)
|
|
|
|
if upsample_type == "conv":
|
|
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
|
|
elif upsample_type == "resnet":
|
|
self.upsamplers = nn.ModuleList(
|
|
[
|
|
ResnetBlock2D(
|
|
in_channels=out_channels,
|
|
out_channels=out_channels,
|
|
temb_channels=temb_channels,
|
|
eps=resnet_eps,
|
|
groups=resnet_groups,
|
|
dropout=dropout,
|
|
time_embedding_norm=resnet_time_scale_shift,
|
|
non_linearity=resnet_act_fn,
|
|
output_scale_factor=output_scale_factor,
|
|
pre_norm=resnet_pre_norm,
|
|
up=True,
|
|
)
|
|
]
|
|
)
|
|
else:
|
|
self.upsamplers = None
|
|
|
|
self.resolution_idx = resolution_idx
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.FloatTensor,
|
|
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
|
|
temb: Optional[torch.FloatTensor] = None,
|
|
upsample_size: Optional[int] = None,
|
|
scale: float = 1.0,
|
|
) -> torch.FloatTensor:
|
|
for resnet, attn in zip(self.resnets, self.attentions):
|
|
|
|
res_hidden_states = res_hidden_states_tuple[-1]
|
|
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
|
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
|
|
|
hidden_states = resnet(hidden_states, temb, scale=scale)
|
|
cross_attention_kwargs = {"scale": scale}
|
|
hidden_states = attn(hidden_states, **cross_attention_kwargs)
|
|
|
|
if self.upsamplers is not None:
|
|
for upsampler in self.upsamplers:
|
|
if self.upsample_type == "resnet":
|
|
hidden_states = upsampler(hidden_states, temb=temb, scale=scale)
|
|
else:
|
|
hidden_states = upsampler(hidden_states, scale=scale)
|
|
|
|
return hidden_states
|
|
|
|
|
|
class CrossAttnUpBlock2D(nn.Module):
|
|
def __init__(
|
|
self,
|
|
in_channels: int,
|
|
out_channels: int,
|
|
prev_output_channel: int,
|
|
temb_channels: int,
|
|
resolution_idx: Optional[int] = None,
|
|
dropout: float = 0.0,
|
|
num_layers: int = 1,
|
|
transformer_layers_per_block: Union[int, Tuple[int]] = 1,
|
|
resnet_eps: float = 1e-6,
|
|
resnet_time_scale_shift: str = "default",
|
|
resnet_act_fn: str = "swish",
|
|
resnet_groups: int = 32,
|
|
resnet_pre_norm: bool = True,
|
|
num_attention_heads: int = 1,
|
|
cross_attention_dim: int = 1280,
|
|
output_scale_factor: float = 1.0,
|
|
add_upsample: bool = True,
|
|
dual_cross_attention: bool = False,
|
|
use_linear_projection: bool = False,
|
|
only_cross_attention: bool = False,
|
|
upcast_attention: bool = False,
|
|
attention_type: str = "default",
|
|
):
|
|
super().__init__()
|
|
resnets = []
|
|
attentions = []
|
|
|
|
self.has_cross_attention = True
|
|
self.num_attention_heads = num_attention_heads
|
|
|
|
if isinstance(transformer_layers_per_block, int):
|
|
transformer_layers_per_block = [transformer_layers_per_block] * num_layers
|
|
|
|
for i in range(num_layers):
|
|
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
|
|
resnet_in_channels = prev_output_channel if i == 0 else out_channels
|
|
|
|
resnets.append(
|
|
ResnetBlock2D(
|
|
in_channels=resnet_in_channels + res_skip_channels,
|
|
out_channels=out_channels,
|
|
temb_channels=temb_channels,
|
|
eps=resnet_eps,
|
|
groups=resnet_groups,
|
|
dropout=dropout,
|
|
time_embedding_norm=resnet_time_scale_shift,
|
|
non_linearity=resnet_act_fn,
|
|
output_scale_factor=output_scale_factor,
|
|
pre_norm=resnet_pre_norm,
|
|
)
|
|
)
|
|
if not dual_cross_attention:
|
|
attentions.append(
|
|
Transformer2DModel(
|
|
num_attention_heads,
|
|
out_channels // num_attention_heads,
|
|
in_channels=out_channels,
|
|
num_layers=transformer_layers_per_block[i],
|
|
cross_attention_dim=cross_attention_dim,
|
|
norm_num_groups=resnet_groups,
|
|
use_linear_projection=use_linear_projection,
|
|
only_cross_attention=only_cross_attention,
|
|
upcast_attention=upcast_attention,
|
|
attention_type=attention_type,
|
|
)
|
|
)
|
|
else:
|
|
attentions.append(
|
|
DualTransformer2DModel(
|
|
num_attention_heads,
|
|
out_channels // num_attention_heads,
|
|
in_channels=out_channels,
|
|
num_layers=1,
|
|
cross_attention_dim=cross_attention_dim,
|
|
norm_num_groups=resnet_groups,
|
|
)
|
|
)
|
|
self.attentions = nn.ModuleList(attentions)
|
|
self.resnets = nn.ModuleList(resnets)
|
|
|
|
if add_upsample:
|
|
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
|
|
else:
|
|
self.upsamplers = None
|
|
|
|
self.gradient_checkpointing = False
|
|
self.resolution_idx = resolution_idx
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.FloatTensor,
|
|
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
|
|
temb: Optional[torch.FloatTensor] = None,
|
|
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
|
upsample_size: Optional[int] = None,
|
|
attention_mask: Optional[torch.FloatTensor] = None,
|
|
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
|
) -> torch.FloatTensor:
|
|
lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
|
|
is_freeu_enabled = (
|
|
getattr(self, "s1", None)
|
|
and getattr(self, "s2", None)
|
|
and getattr(self, "b1", None)
|
|
and getattr(self, "b2", None)
|
|
)
|
|
garment_features = []
|
|
for resnet, attn in zip(self.resnets, self.attentions):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
res_hidden_states = res_hidden_states_tuple[-1]
|
|
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
|
|
|
|
|
if is_freeu_enabled:
|
|
hidden_states, res_hidden_states = apply_freeu(
|
|
self.resolution_idx,
|
|
hidden_states,
|
|
res_hidden_states,
|
|
s1=self.s1,
|
|
s2=self.s2,
|
|
b1=self.b1,
|
|
b2=self.b2,
|
|
)
|
|
|
|
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
|
|
|
|
|
if self.training and self.gradient_checkpointing:
|
|
|
|
def create_custom_forward(module, return_dict=None):
|
|
def custom_forward(*inputs):
|
|
if return_dict is not None:
|
|
return module(*inputs, return_dict=return_dict)
|
|
else:
|
|
return module(*inputs)
|
|
|
|
return custom_forward
|
|
|
|
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
|
hidden_states = torch.utils.checkpoint.checkpoint(
|
|
create_custom_forward(resnet),
|
|
hidden_states,
|
|
temb,
|
|
**ckpt_kwargs,
|
|
)
|
|
hidden_states,out_garment_feat = attn(
|
|
hidden_states,
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
cross_attention_kwargs=cross_attention_kwargs,
|
|
attention_mask=attention_mask,
|
|
encoder_attention_mask=encoder_attention_mask,
|
|
return_dict=False,
|
|
)
|
|
hidden_states=hidden_states[0]
|
|
else:
|
|
hidden_states = resnet(hidden_states, temb, scale=lora_scale)
|
|
hidden_states,out_garment_feat = attn(
|
|
hidden_states,
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
cross_attention_kwargs=cross_attention_kwargs,
|
|
attention_mask=attention_mask,
|
|
encoder_attention_mask=encoder_attention_mask,
|
|
return_dict=False,
|
|
)
|
|
hidden_states=hidden_states[0]
|
|
garment_features += out_garment_feat
|
|
if self.upsamplers is not None:
|
|
for upsampler in self.upsamplers:
|
|
hidden_states = upsampler(hidden_states, upsample_size, scale=lora_scale)
|
|
|
|
return hidden_states,garment_features
|
|
|
|
|
|
class UpBlock2D(nn.Module):
|
|
def __init__(
|
|
self,
|
|
in_channels: int,
|
|
prev_output_channel: int,
|
|
out_channels: int,
|
|
temb_channels: int,
|
|
resolution_idx: Optional[int] = None,
|
|
dropout: float = 0.0,
|
|
num_layers: int = 1,
|
|
resnet_eps: float = 1e-6,
|
|
resnet_time_scale_shift: str = "default",
|
|
resnet_act_fn: str = "swish",
|
|
resnet_groups: int = 32,
|
|
resnet_pre_norm: bool = True,
|
|
output_scale_factor: float = 1.0,
|
|
add_upsample: bool = True,
|
|
):
|
|
super().__init__()
|
|
resnets = []
|
|
|
|
for i in range(num_layers):
|
|
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
|
|
resnet_in_channels = prev_output_channel if i == 0 else out_channels
|
|
|
|
resnets.append(
|
|
ResnetBlock2D(
|
|
in_channels=resnet_in_channels + res_skip_channels,
|
|
out_channels=out_channels,
|
|
temb_channels=temb_channels,
|
|
eps=resnet_eps,
|
|
groups=resnet_groups,
|
|
dropout=dropout,
|
|
time_embedding_norm=resnet_time_scale_shift,
|
|
non_linearity=resnet_act_fn,
|
|
output_scale_factor=output_scale_factor,
|
|
pre_norm=resnet_pre_norm,
|
|
)
|
|
)
|
|
|
|
self.resnets = nn.ModuleList(resnets)
|
|
|
|
if add_upsample:
|
|
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
|
|
else:
|
|
self.upsamplers = None
|
|
|
|
self.gradient_checkpointing = False
|
|
self.resolution_idx = resolution_idx
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.FloatTensor,
|
|
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
|
|
temb: Optional[torch.FloatTensor] = None,
|
|
upsample_size: Optional[int] = None,
|
|
scale: float = 1.0,
|
|
) -> torch.FloatTensor:
|
|
is_freeu_enabled = (
|
|
getattr(self, "s1", None)
|
|
and getattr(self, "s2", None)
|
|
and getattr(self, "b1", None)
|
|
and getattr(self, "b2", None)
|
|
)
|
|
|
|
for resnet in self.resnets:
|
|
|
|
res_hidden_states = res_hidden_states_tuple[-1]
|
|
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
|
|
|
|
|
if is_freeu_enabled:
|
|
hidden_states, res_hidden_states = apply_freeu(
|
|
self.resolution_idx,
|
|
hidden_states,
|
|
res_hidden_states,
|
|
s1=self.s1,
|
|
s2=self.s2,
|
|
b1=self.b1,
|
|
b2=self.b2,
|
|
)
|
|
|
|
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
|
|
|
if self.training and self.gradient_checkpointing:
|
|
|
|
def create_custom_forward(module):
|
|
def custom_forward(*inputs):
|
|
return module(*inputs)
|
|
|
|
return custom_forward
|
|
|
|
if is_torch_version(">=", "1.11.0"):
|
|
hidden_states = torch.utils.checkpoint.checkpoint(
|
|
create_custom_forward(resnet), hidden_states, temb, use_reentrant=False
|
|
)
|
|
else:
|
|
hidden_states = torch.utils.checkpoint.checkpoint(
|
|
create_custom_forward(resnet), hidden_states, temb
|
|
)
|
|
else:
|
|
hidden_states = resnet(hidden_states, temb, scale=scale)
|
|
|
|
if self.upsamplers is not None:
|
|
for upsampler in self.upsamplers:
|
|
hidden_states = upsampler(hidden_states, upsample_size, scale=scale)
|
|
|
|
return hidden_states
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class UpDecoderBlock2D(nn.Module):
|
|
def __init__(
|
|
self,
|
|
in_channels: int,
|
|
out_channels: int,
|
|
resolution_idx: Optional[int] = None,
|
|
dropout: float = 0.0,
|
|
num_layers: int = 1,
|
|
resnet_eps: float = 1e-6,
|
|
resnet_time_scale_shift: str = "default",
|
|
resnet_act_fn: str = "swish",
|
|
resnet_groups: int = 32,
|
|
resnet_pre_norm: bool = True,
|
|
output_scale_factor: float = 1.0,
|
|
add_upsample: bool = True,
|
|
temb_channels: Optional[int] = None,
|
|
):
|
|
super().__init__()
|
|
resnets = []
|
|
|
|
for i in range(num_layers):
|
|
input_channels = in_channels if i == 0 else out_channels
|
|
|
|
resnets.append(
|
|
ResnetBlock2D(
|
|
in_channels=input_channels,
|
|
out_channels=out_channels,
|
|
temb_channels=temb_channels,
|
|
eps=resnet_eps,
|
|
groups=resnet_groups,
|
|
dropout=dropout,
|
|
time_embedding_norm=resnet_time_scale_shift,
|
|
non_linearity=resnet_act_fn,
|
|
output_scale_factor=output_scale_factor,
|
|
pre_norm=resnet_pre_norm,
|
|
)
|
|
)
|
|
|
|
self.resnets = nn.ModuleList(resnets)
|
|
|
|
if add_upsample:
|
|
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
|
|
else:
|
|
self.upsamplers = None
|
|
|
|
self.resolution_idx = resolution_idx
|
|
|
|
def forward(
|
|
self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None, scale: float = 1.0
|
|
) -> torch.FloatTensor:
|
|
for resnet in self.resnets:
|
|
hidden_states = resnet(hidden_states, temb=temb, scale=scale)
|
|
|
|
if self.upsamplers is not None:
|
|
for upsampler in self.upsamplers:
|
|
hidden_states = upsampler(hidden_states)
|
|
|
|
return hidden_states
|
|
|
|
|
|
class AttnUpDecoderBlock2D(nn.Module):
|
|
def __init__(
|
|
self,
|
|
in_channels: int,
|
|
out_channels: int,
|
|
resolution_idx: Optional[int] = None,
|
|
dropout: float = 0.0,
|
|
num_layers: int = 1,
|
|
resnet_eps: float = 1e-6,
|
|
resnet_time_scale_shift: str = "default",
|
|
resnet_act_fn: str = "swish",
|
|
resnet_groups: int = 32,
|
|
resnet_pre_norm: bool = True,
|
|
attention_head_dim: int = 1,
|
|
output_scale_factor: float = 1.0,
|
|
add_upsample: bool = True,
|
|
temb_channels: Optional[int] = None,
|
|
):
|
|
super().__init__()
|
|
resnets = []
|
|
attentions = []
|
|
|
|
if attention_head_dim is None:
|
|
logger.warn(
|
|
f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `out_channels`: {out_channels}."
|
|
)
|
|
attention_head_dim = out_channels
|
|
|
|
for i in range(num_layers):
|
|
input_channels = in_channels if i == 0 else out_channels
|
|
|
|
resnets.append(
|
|
ResnetBlock2D(
|
|
in_channels=input_channels,
|
|
out_channels=out_channels,
|
|
temb_channels=temb_channels,
|
|
eps=resnet_eps,
|
|
groups=resnet_groups,
|
|
dropout=dropout,
|
|
time_embedding_norm=resnet_time_scale_shift,
|
|
non_linearity=resnet_act_fn,
|
|
output_scale_factor=output_scale_factor,
|
|
pre_norm=resnet_pre_norm,
|
|
)
|
|
)
|
|
attentions.append(
|
|
Attention(
|
|
out_channels,
|
|
heads=out_channels // attention_head_dim,
|
|
dim_head=attention_head_dim,
|
|
rescale_output_factor=output_scale_factor,
|
|
eps=resnet_eps,
|
|
norm_num_groups=resnet_groups if resnet_time_scale_shift != "spatial" else None,
|
|
spatial_norm_dim=temb_channels if resnet_time_scale_shift == "spatial" else None,
|
|
residual_connection=True,
|
|
bias=True,
|
|
upcast_softmax=True,
|
|
_from_deprecated_attn_block=True,
|
|
)
|
|
)
|
|
|
|
self.attentions = nn.ModuleList(attentions)
|
|
self.resnets = nn.ModuleList(resnets)
|
|
|
|
if add_upsample:
|
|
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
|
|
else:
|
|
self.upsamplers = None
|
|
|
|
self.resolution_idx = resolution_idx
|
|
|
|
def forward(
|
|
self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None, scale: float = 1.0
|
|
) -> torch.FloatTensor:
|
|
for resnet, attn in zip(self.resnets, self.attentions):
|
|
hidden_states = resnet(hidden_states, temb=temb, scale=scale)
|
|
cross_attention_kwargs = {"scale": scale}
|
|
hidden_states = attn(hidden_states, temb=temb, **cross_attention_kwargs)
|
|
|
|
if self.upsamplers is not None:
|
|
for upsampler in self.upsamplers:
|
|
hidden_states = upsampler(hidden_states, scale=scale)
|
|
|
|
return hidden_states
|
|
|
|
|
|
class AttnSkipUpBlock2D(nn.Module):
|
|
def __init__(
|
|
self,
|
|
in_channels: int,
|
|
prev_output_channel: int,
|
|
out_channels: int,
|
|
temb_channels: int,
|
|
resolution_idx: Optional[int] = None,
|
|
dropout: float = 0.0,
|
|
num_layers: int = 1,
|
|
resnet_eps: float = 1e-6,
|
|
resnet_time_scale_shift: str = "default",
|
|
resnet_act_fn: str = "swish",
|
|
resnet_pre_norm: bool = True,
|
|
attention_head_dim: int = 1,
|
|
output_scale_factor: float = np.sqrt(2.0),
|
|
add_upsample: bool = True,
|
|
):
|
|
super().__init__()
|
|
self.attentions = nn.ModuleList([])
|
|
self.resnets = nn.ModuleList([])
|
|
|
|
for i in range(num_layers):
|
|
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
|
|
resnet_in_channels = prev_output_channel if i == 0 else out_channels
|
|
|
|
self.resnets.append(
|
|
ResnetBlock2D(
|
|
in_channels=resnet_in_channels + res_skip_channels,
|
|
out_channels=out_channels,
|
|
temb_channels=temb_channels,
|
|
eps=resnet_eps,
|
|
groups=min(resnet_in_channels + res_skip_channels // 4, 32),
|
|
groups_out=min(out_channels // 4, 32),
|
|
dropout=dropout,
|
|
time_embedding_norm=resnet_time_scale_shift,
|
|
non_linearity=resnet_act_fn,
|
|
output_scale_factor=output_scale_factor,
|
|
pre_norm=resnet_pre_norm,
|
|
)
|
|
)
|
|
|
|
if attention_head_dim is None:
|
|
logger.warn(
|
|
f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `out_channels`: {out_channels}."
|
|
)
|
|
attention_head_dim = out_channels
|
|
|
|
self.attentions.append(
|
|
Attention(
|
|
out_channels,
|
|
heads=out_channels // attention_head_dim,
|
|
dim_head=attention_head_dim,
|
|
rescale_output_factor=output_scale_factor,
|
|
eps=resnet_eps,
|
|
norm_num_groups=32,
|
|
residual_connection=True,
|
|
bias=True,
|
|
upcast_softmax=True,
|
|
_from_deprecated_attn_block=True,
|
|
)
|
|
)
|
|
|
|
self.upsampler = FirUpsample2D(in_channels, out_channels=out_channels)
|
|
if add_upsample:
|
|
self.resnet_up = ResnetBlock2D(
|
|
in_channels=out_channels,
|
|
out_channels=out_channels,
|
|
temb_channels=temb_channels,
|
|
eps=resnet_eps,
|
|
groups=min(out_channels // 4, 32),
|
|
groups_out=min(out_channels // 4, 32),
|
|
dropout=dropout,
|
|
time_embedding_norm=resnet_time_scale_shift,
|
|
non_linearity=resnet_act_fn,
|
|
output_scale_factor=output_scale_factor,
|
|
pre_norm=resnet_pre_norm,
|
|
use_in_shortcut=True,
|
|
up=True,
|
|
kernel="fir",
|
|
)
|
|
self.skip_conv = nn.Conv2d(out_channels, 3, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
|
self.skip_norm = torch.nn.GroupNorm(
|
|
num_groups=min(out_channels // 4, 32), num_channels=out_channels, eps=resnet_eps, affine=True
|
|
)
|
|
self.act = nn.SiLU()
|
|
else:
|
|
self.resnet_up = None
|
|
self.skip_conv = None
|
|
self.skip_norm = None
|
|
self.act = None
|
|
|
|
self.resolution_idx = resolution_idx
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.FloatTensor,
|
|
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
|
|
temb: Optional[torch.FloatTensor] = None,
|
|
skip_sample=None,
|
|
scale: float = 1.0,
|
|
) -> Tuple[torch.FloatTensor, torch.FloatTensor]:
|
|
for resnet in self.resnets:
|
|
|
|
res_hidden_states = res_hidden_states_tuple[-1]
|
|
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
|
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
|
|
|
hidden_states = resnet(hidden_states, temb, scale=scale)
|
|
|
|
cross_attention_kwargs = {"scale": scale}
|
|
hidden_states = self.attentions[0](hidden_states, **cross_attention_kwargs)
|
|
|
|
if skip_sample is not None:
|
|
skip_sample = self.upsampler(skip_sample)
|
|
else:
|
|
skip_sample = 0
|
|
|
|
if self.resnet_up is not None:
|
|
skip_sample_states = self.skip_norm(hidden_states)
|
|
skip_sample_states = self.act(skip_sample_states)
|
|
skip_sample_states = self.skip_conv(skip_sample_states)
|
|
|
|
skip_sample = skip_sample + skip_sample_states
|
|
|
|
hidden_states = self.resnet_up(hidden_states, temb, scale=scale)
|
|
|
|
return hidden_states, skip_sample
|
|
|
|
|
|
class SkipUpBlock2D(nn.Module):
|
|
def __init__(
|
|
self,
|
|
in_channels: int,
|
|
prev_output_channel: int,
|
|
out_channels: int,
|
|
temb_channels: int,
|
|
resolution_idx: Optional[int] = None,
|
|
dropout: float = 0.0,
|
|
num_layers: int = 1,
|
|
resnet_eps: float = 1e-6,
|
|
resnet_time_scale_shift: str = "default",
|
|
resnet_act_fn: str = "swish",
|
|
resnet_pre_norm: bool = True,
|
|
output_scale_factor: float = np.sqrt(2.0),
|
|
add_upsample: bool = True,
|
|
upsample_padding: int = 1,
|
|
):
|
|
super().__init__()
|
|
self.resnets = nn.ModuleList([])
|
|
|
|
for i in range(num_layers):
|
|
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
|
|
resnet_in_channels = prev_output_channel if i == 0 else out_channels
|
|
|
|
self.resnets.append(
|
|
ResnetBlock2D(
|
|
in_channels=resnet_in_channels + res_skip_channels,
|
|
out_channels=out_channels,
|
|
temb_channels=temb_channels,
|
|
eps=resnet_eps,
|
|
groups=min((resnet_in_channels + res_skip_channels) // 4, 32),
|
|
groups_out=min(out_channels // 4, 32),
|
|
dropout=dropout,
|
|
time_embedding_norm=resnet_time_scale_shift,
|
|
non_linearity=resnet_act_fn,
|
|
output_scale_factor=output_scale_factor,
|
|
pre_norm=resnet_pre_norm,
|
|
)
|
|
)
|
|
|
|
self.upsampler = FirUpsample2D(in_channels, out_channels=out_channels)
|
|
if add_upsample:
|
|
self.resnet_up = ResnetBlock2D(
|
|
in_channels=out_channels,
|
|
out_channels=out_channels,
|
|
temb_channels=temb_channels,
|
|
eps=resnet_eps,
|
|
groups=min(out_channels // 4, 32),
|
|
groups_out=min(out_channels // 4, 32),
|
|
dropout=dropout,
|
|
time_embedding_norm=resnet_time_scale_shift,
|
|
non_linearity=resnet_act_fn,
|
|
output_scale_factor=output_scale_factor,
|
|
pre_norm=resnet_pre_norm,
|
|
use_in_shortcut=True,
|
|
up=True,
|
|
kernel="fir",
|
|
)
|
|
self.skip_conv = nn.Conv2d(out_channels, 3, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
|
self.skip_norm = torch.nn.GroupNorm(
|
|
num_groups=min(out_channels // 4, 32), num_channels=out_channels, eps=resnet_eps, affine=True
|
|
)
|
|
self.act = nn.SiLU()
|
|
else:
|
|
self.resnet_up = None
|
|
self.skip_conv = None
|
|
self.skip_norm = None
|
|
self.act = None
|
|
|
|
self.resolution_idx = resolution_idx
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.FloatTensor,
|
|
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
|
|
temb: Optional[torch.FloatTensor] = None,
|
|
skip_sample=None,
|
|
scale: float = 1.0,
|
|
) -> Tuple[torch.FloatTensor, torch.FloatTensor]:
|
|
for resnet in self.resnets:
|
|
|
|
res_hidden_states = res_hidden_states_tuple[-1]
|
|
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
|
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
|
|
|
hidden_states = resnet(hidden_states, temb, scale=scale)
|
|
|
|
if skip_sample is not None:
|
|
skip_sample = self.upsampler(skip_sample)
|
|
else:
|
|
skip_sample = 0
|
|
|
|
if self.resnet_up is not None:
|
|
skip_sample_states = self.skip_norm(hidden_states)
|
|
skip_sample_states = self.act(skip_sample_states)
|
|
skip_sample_states = self.skip_conv(skip_sample_states)
|
|
|
|
skip_sample = skip_sample + skip_sample_states
|
|
|
|
hidden_states = self.resnet_up(hidden_states, temb, scale=scale)
|
|
|
|
return hidden_states, skip_sample
|
|
|
|
|
|
class ResnetUpsampleBlock2D(nn.Module):
|
|
def __init__(
|
|
self,
|
|
in_channels: int,
|
|
prev_output_channel: int,
|
|
out_channels: int,
|
|
temb_channels: int,
|
|
resolution_idx: Optional[int] = None,
|
|
dropout: float = 0.0,
|
|
num_layers: int = 1,
|
|
resnet_eps: float = 1e-6,
|
|
resnet_time_scale_shift: str = "default",
|
|
resnet_act_fn: str = "swish",
|
|
resnet_groups: int = 32,
|
|
resnet_pre_norm: bool = True,
|
|
output_scale_factor: float = 1.0,
|
|
add_upsample: bool = True,
|
|
skip_time_act: bool = False,
|
|
):
|
|
super().__init__()
|
|
resnets = []
|
|
|
|
for i in range(num_layers):
|
|
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
|
|
resnet_in_channels = prev_output_channel if i == 0 else out_channels
|
|
|
|
resnets.append(
|
|
ResnetBlock2D(
|
|
in_channels=resnet_in_channels + res_skip_channels,
|
|
out_channels=out_channels,
|
|
temb_channels=temb_channels,
|
|
eps=resnet_eps,
|
|
groups=resnet_groups,
|
|
dropout=dropout,
|
|
time_embedding_norm=resnet_time_scale_shift,
|
|
non_linearity=resnet_act_fn,
|
|
output_scale_factor=output_scale_factor,
|
|
pre_norm=resnet_pre_norm,
|
|
skip_time_act=skip_time_act,
|
|
)
|
|
)
|
|
|
|
self.resnets = nn.ModuleList(resnets)
|
|
|
|
if add_upsample:
|
|
self.upsamplers = nn.ModuleList(
|
|
[
|
|
ResnetBlock2D(
|
|
in_channels=out_channels,
|
|
out_channels=out_channels,
|
|
temb_channels=temb_channels,
|
|
eps=resnet_eps,
|
|
groups=resnet_groups,
|
|
dropout=dropout,
|
|
time_embedding_norm=resnet_time_scale_shift,
|
|
non_linearity=resnet_act_fn,
|
|
output_scale_factor=output_scale_factor,
|
|
pre_norm=resnet_pre_norm,
|
|
skip_time_act=skip_time_act,
|
|
up=True,
|
|
)
|
|
]
|
|
)
|
|
else:
|
|
self.upsamplers = None
|
|
|
|
self.gradient_checkpointing = False
|
|
self.resolution_idx = resolution_idx
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.FloatTensor,
|
|
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
|
|
temb: Optional[torch.FloatTensor] = None,
|
|
upsample_size: Optional[int] = None,
|
|
scale: float = 1.0,
|
|
) -> torch.FloatTensor:
|
|
for resnet in self.resnets:
|
|
|
|
res_hidden_states = res_hidden_states_tuple[-1]
|
|
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
|
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
|
|
|
if self.training and self.gradient_checkpointing:
|
|
|
|
def create_custom_forward(module):
|
|
def custom_forward(*inputs):
|
|
return module(*inputs)
|
|
|
|
return custom_forward
|
|
|
|
if is_torch_version(">=", "1.11.0"):
|
|
hidden_states = torch.utils.checkpoint.checkpoint(
|
|
create_custom_forward(resnet), hidden_states, temb, use_reentrant=False
|
|
)
|
|
else:
|
|
hidden_states = torch.utils.checkpoint.checkpoint(
|
|
create_custom_forward(resnet), hidden_states, temb
|
|
)
|
|
else:
|
|
hidden_states = resnet(hidden_states, temb, scale=scale)
|
|
|
|
if self.upsamplers is not None:
|
|
for upsampler in self.upsamplers:
|
|
hidden_states = upsampler(hidden_states, temb, scale=scale)
|
|
|
|
return hidden_states
|
|
|
|
|
|
class SimpleCrossAttnUpBlock2D(nn.Module):
|
|
def __init__(
|
|
self,
|
|
in_channels: int,
|
|
out_channels: int,
|
|
prev_output_channel: int,
|
|
temb_channels: int,
|
|
resolution_idx: Optional[int] = None,
|
|
dropout: float = 0.0,
|
|
num_layers: int = 1,
|
|
resnet_eps: float = 1e-6,
|
|
resnet_time_scale_shift: str = "default",
|
|
resnet_act_fn: str = "swish",
|
|
resnet_groups: int = 32,
|
|
resnet_pre_norm: bool = True,
|
|
attention_head_dim: int = 1,
|
|
cross_attention_dim: int = 1280,
|
|
output_scale_factor: float = 1.0,
|
|
add_upsample: bool = True,
|
|
skip_time_act: bool = False,
|
|
only_cross_attention: bool = False,
|
|
cross_attention_norm: Optional[str] = None,
|
|
):
|
|
super().__init__()
|
|
resnets = []
|
|
attentions = []
|
|
|
|
self.has_cross_attention = True
|
|
self.attention_head_dim = attention_head_dim
|
|
|
|
self.num_heads = out_channels // self.attention_head_dim
|
|
|
|
for i in range(num_layers):
|
|
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
|
|
resnet_in_channels = prev_output_channel if i == 0 else out_channels
|
|
|
|
resnets.append(
|
|
ResnetBlock2D(
|
|
in_channels=resnet_in_channels + res_skip_channels,
|
|
out_channels=out_channels,
|
|
temb_channels=temb_channels,
|
|
eps=resnet_eps,
|
|
groups=resnet_groups,
|
|
dropout=dropout,
|
|
time_embedding_norm=resnet_time_scale_shift,
|
|
non_linearity=resnet_act_fn,
|
|
output_scale_factor=output_scale_factor,
|
|
pre_norm=resnet_pre_norm,
|
|
skip_time_act=skip_time_act,
|
|
)
|
|
)
|
|
|
|
processor = (
|
|
AttnAddedKVProcessor2_0() if hasattr(F, "scaled_dot_product_attention") else AttnAddedKVProcessor()
|
|
)
|
|
|
|
attentions.append(
|
|
Attention(
|
|
query_dim=out_channels,
|
|
cross_attention_dim=out_channels,
|
|
heads=self.num_heads,
|
|
dim_head=self.attention_head_dim,
|
|
added_kv_proj_dim=cross_attention_dim,
|
|
norm_num_groups=resnet_groups,
|
|
bias=True,
|
|
upcast_softmax=True,
|
|
only_cross_attention=only_cross_attention,
|
|
cross_attention_norm=cross_attention_norm,
|
|
processor=processor,
|
|
)
|
|
)
|
|
self.attentions = nn.ModuleList(attentions)
|
|
self.resnets = nn.ModuleList(resnets)
|
|
|
|
if add_upsample:
|
|
self.upsamplers = nn.ModuleList(
|
|
[
|
|
ResnetBlock2D(
|
|
in_channels=out_channels,
|
|
out_channels=out_channels,
|
|
temb_channels=temb_channels,
|
|
eps=resnet_eps,
|
|
groups=resnet_groups,
|
|
dropout=dropout,
|
|
time_embedding_norm=resnet_time_scale_shift,
|
|
non_linearity=resnet_act_fn,
|
|
output_scale_factor=output_scale_factor,
|
|
pre_norm=resnet_pre_norm,
|
|
skip_time_act=skip_time_act,
|
|
up=True,
|
|
)
|
|
]
|
|
)
|
|
else:
|
|
self.upsamplers = None
|
|
|
|
self.gradient_checkpointing = False
|
|
self.resolution_idx = resolution_idx
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.FloatTensor,
|
|
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
|
|
temb: Optional[torch.FloatTensor] = None,
|
|
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
|
upsample_size: Optional[int] = None,
|
|
attention_mask: Optional[torch.FloatTensor] = None,
|
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
|
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
|
) -> torch.FloatTensor:
|
|
cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
|
|
|
|
lora_scale = cross_attention_kwargs.get("scale", 1.0)
|
|
if attention_mask is None:
|
|
|
|
mask = None if encoder_hidden_states is None else encoder_attention_mask
|
|
else:
|
|
|
|
|
|
|
|
|
|
|
|
mask = attention_mask
|
|
|
|
for resnet, attn in zip(self.resnets, self.attentions):
|
|
|
|
|
|
res_hidden_states = res_hidden_states_tuple[-1]
|
|
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
|
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
|
|
|
if self.training and self.gradient_checkpointing:
|
|
|
|
def create_custom_forward(module, return_dict=None):
|
|
def custom_forward(*inputs):
|
|
if return_dict is not None:
|
|
return module(*inputs, return_dict=return_dict)
|
|
else:
|
|
return module(*inputs)
|
|
|
|
return custom_forward
|
|
|
|
hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
|
|
hidden_states = attn(
|
|
hidden_states,
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
attention_mask=mask,
|
|
**cross_attention_kwargs,
|
|
)
|
|
else:
|
|
hidden_states = resnet(hidden_states, temb, scale=lora_scale)
|
|
|
|
hidden_states = attn(
|
|
hidden_states,
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
attention_mask=mask,
|
|
**cross_attention_kwargs,
|
|
)
|
|
|
|
if self.upsamplers is not None:
|
|
for upsampler in self.upsamplers:
|
|
hidden_states = upsampler(hidden_states, temb, scale=lora_scale)
|
|
|
|
return hidden_states
|
|
|
|
|
|
class KUpBlock2D(nn.Module):
|
|
def __init__(
|
|
self,
|
|
in_channels: int,
|
|
out_channels: int,
|
|
temb_channels: int,
|
|
resolution_idx: int,
|
|
dropout: float = 0.0,
|
|
num_layers: int = 5,
|
|
resnet_eps: float = 1e-5,
|
|
resnet_act_fn: str = "gelu",
|
|
resnet_group_size: Optional[int] = 32,
|
|
add_upsample: bool = True,
|
|
):
|
|
super().__init__()
|
|
resnets = []
|
|
k_in_channels = 2 * out_channels
|
|
k_out_channels = in_channels
|
|
num_layers = num_layers - 1
|
|
|
|
for i in range(num_layers):
|
|
in_channels = k_in_channels if i == 0 else out_channels
|
|
groups = in_channels // resnet_group_size
|
|
groups_out = out_channels // resnet_group_size
|
|
|
|
resnets.append(
|
|
ResnetBlock2D(
|
|
in_channels=in_channels,
|
|
out_channels=k_out_channels if (i == num_layers - 1) else out_channels,
|
|
temb_channels=temb_channels,
|
|
eps=resnet_eps,
|
|
groups=groups,
|
|
groups_out=groups_out,
|
|
dropout=dropout,
|
|
non_linearity=resnet_act_fn,
|
|
time_embedding_norm="ada_group",
|
|
conv_shortcut_bias=False,
|
|
)
|
|
)
|
|
|
|
self.resnets = nn.ModuleList(resnets)
|
|
|
|
if add_upsample:
|
|
self.upsamplers = nn.ModuleList([KUpsample2D()])
|
|
else:
|
|
self.upsamplers = None
|
|
|
|
self.gradient_checkpointing = False
|
|
self.resolution_idx = resolution_idx
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.FloatTensor,
|
|
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
|
|
temb: Optional[torch.FloatTensor] = None,
|
|
upsample_size: Optional[int] = None,
|
|
scale: float = 1.0,
|
|
) -> torch.FloatTensor:
|
|
res_hidden_states_tuple = res_hidden_states_tuple[-1]
|
|
if res_hidden_states_tuple is not None:
|
|
hidden_states = torch.cat([hidden_states, res_hidden_states_tuple], dim=1)
|
|
|
|
for resnet in self.resnets:
|
|
if self.training and self.gradient_checkpointing:
|
|
|
|
def create_custom_forward(module):
|
|
def custom_forward(*inputs):
|
|
return module(*inputs)
|
|
|
|
return custom_forward
|
|
|
|
if is_torch_version(">=", "1.11.0"):
|
|
hidden_states = torch.utils.checkpoint.checkpoint(
|
|
create_custom_forward(resnet), hidden_states, temb, use_reentrant=False
|
|
)
|
|
else:
|
|
hidden_states = torch.utils.checkpoint.checkpoint(
|
|
create_custom_forward(resnet), hidden_states, temb
|
|
)
|
|
else:
|
|
hidden_states = resnet(hidden_states, temb, scale=scale)
|
|
|
|
if self.upsamplers is not None:
|
|
for upsampler in self.upsamplers:
|
|
hidden_states = upsampler(hidden_states)
|
|
|
|
return hidden_states
|
|
|
|
|
|
class KCrossAttnUpBlock2D(nn.Module):
|
|
def __init__(
|
|
self,
|
|
in_channels: int,
|
|
out_channels: int,
|
|
temb_channels: int,
|
|
resolution_idx: int,
|
|
dropout: float = 0.0,
|
|
num_layers: int = 4,
|
|
resnet_eps: float = 1e-5,
|
|
resnet_act_fn: str = "gelu",
|
|
resnet_group_size: int = 32,
|
|
attention_head_dim: int = 1,
|
|
cross_attention_dim: int = 768,
|
|
add_upsample: bool = True,
|
|
upcast_attention: bool = False,
|
|
):
|
|
super().__init__()
|
|
resnets = []
|
|
attentions = []
|
|
|
|
is_first_block = in_channels == out_channels == temb_channels
|
|
is_middle_block = in_channels != out_channels
|
|
add_self_attention = True if is_first_block else False
|
|
|
|
self.has_cross_attention = True
|
|
self.attention_head_dim = attention_head_dim
|
|
|
|
|
|
k_in_channels = out_channels if is_first_block else 2 * out_channels
|
|
k_out_channels = in_channels
|
|
|
|
num_layers = num_layers - 1
|
|
|
|
for i in range(num_layers):
|
|
in_channels = k_in_channels if i == 0 else out_channels
|
|
groups = in_channels // resnet_group_size
|
|
groups_out = out_channels // resnet_group_size
|
|
|
|
if is_middle_block and (i == num_layers - 1):
|
|
conv_2d_out_channels = k_out_channels
|
|
else:
|
|
conv_2d_out_channels = None
|
|
|
|
resnets.append(
|
|
ResnetBlock2D(
|
|
in_channels=in_channels,
|
|
out_channels=out_channels,
|
|
conv_2d_out_channels=conv_2d_out_channels,
|
|
temb_channels=temb_channels,
|
|
eps=resnet_eps,
|
|
groups=groups,
|
|
groups_out=groups_out,
|
|
dropout=dropout,
|
|
non_linearity=resnet_act_fn,
|
|
time_embedding_norm="ada_group",
|
|
conv_shortcut_bias=False,
|
|
)
|
|
)
|
|
attentions.append(
|
|
KAttentionBlock(
|
|
k_out_channels if (i == num_layers - 1) else out_channels,
|
|
k_out_channels // attention_head_dim
|
|
if (i == num_layers - 1)
|
|
else out_channels // attention_head_dim,
|
|
attention_head_dim,
|
|
cross_attention_dim=cross_attention_dim,
|
|
temb_channels=temb_channels,
|
|
attention_bias=True,
|
|
add_self_attention=add_self_attention,
|
|
cross_attention_norm="layer_norm",
|
|
upcast_attention=upcast_attention,
|
|
)
|
|
)
|
|
|
|
self.resnets = nn.ModuleList(resnets)
|
|
self.attentions = nn.ModuleList(attentions)
|
|
|
|
if add_upsample:
|
|
self.upsamplers = nn.ModuleList([KUpsample2D()])
|
|
else:
|
|
self.upsamplers = None
|
|
|
|
self.gradient_checkpointing = False
|
|
self.resolution_idx = resolution_idx
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.FloatTensor,
|
|
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
|
|
temb: Optional[torch.FloatTensor] = None,
|
|
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
|
upsample_size: Optional[int] = None,
|
|
attention_mask: Optional[torch.FloatTensor] = None,
|
|
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
|
) -> torch.FloatTensor:
|
|
res_hidden_states_tuple = res_hidden_states_tuple[-1]
|
|
if res_hidden_states_tuple is not None:
|
|
hidden_states = torch.cat([hidden_states, res_hidden_states_tuple], dim=1)
|
|
|
|
lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
|
|
for resnet, attn in zip(self.resnets, self.attentions):
|
|
if self.training and self.gradient_checkpointing:
|
|
|
|
def create_custom_forward(module, return_dict=None):
|
|
def custom_forward(*inputs):
|
|
if return_dict is not None:
|
|
return module(*inputs, return_dict=return_dict)
|
|
else:
|
|
return module(*inputs)
|
|
|
|
return custom_forward
|
|
|
|
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
|
hidden_states = torch.utils.checkpoint.checkpoint(
|
|
create_custom_forward(resnet),
|
|
hidden_states,
|
|
temb,
|
|
**ckpt_kwargs,
|
|
)
|
|
hidden_states = attn(
|
|
hidden_states,
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
emb=temb,
|
|
attention_mask=attention_mask,
|
|
cross_attention_kwargs=cross_attention_kwargs,
|
|
encoder_attention_mask=encoder_attention_mask,
|
|
)
|
|
else:
|
|
hidden_states = resnet(hidden_states, temb, scale=lora_scale)
|
|
hidden_states = attn(
|
|
hidden_states,
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
emb=temb,
|
|
attention_mask=attention_mask,
|
|
cross_attention_kwargs=cross_attention_kwargs,
|
|
encoder_attention_mask=encoder_attention_mask,
|
|
)
|
|
|
|
if self.upsamplers is not None:
|
|
for upsampler in self.upsamplers:
|
|
hidden_states = upsampler(hidden_states)
|
|
|
|
return hidden_states
|
|
|
|
|
|
|
|
class KAttentionBlock(nn.Module):
|
|
r"""
|
|
A basic Transformer block.
|
|
|
|
Parameters:
|
|
dim (`int`): The number of channels in the input and output.
|
|
num_attention_heads (`int`): The number of heads to use for multi-head attention.
|
|
attention_head_dim (`int`): The number of channels in each head.
|
|
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
|
cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
|
|
attention_bias (`bool`, *optional*, defaults to `False`):
|
|
Configure if the attention layers should contain a bias parameter.
|
|
upcast_attention (`bool`, *optional*, defaults to `False`):
|
|
Set to `True` to upcast the attention computation to `float32`.
|
|
temb_channels (`int`, *optional*, defaults to 768):
|
|
The number of channels in the token embedding.
|
|
add_self_attention (`bool`, *optional*, defaults to `False`):
|
|
Set to `True` to add self-attention to the block.
|
|
cross_attention_norm (`str`, *optional*, defaults to `None`):
|
|
The type of normalization to use for the cross attention. Can be `None`, `layer_norm`, or `group_norm`.
|
|
group_size (`int`, *optional*, defaults to 32):
|
|
The number of groups to separate the channels into for group normalization.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
dim: int,
|
|
num_attention_heads: int,
|
|
attention_head_dim: int,
|
|
dropout: float = 0.0,
|
|
cross_attention_dim: Optional[int] = None,
|
|
attention_bias: bool = False,
|
|
upcast_attention: bool = False,
|
|
temb_channels: int = 768,
|
|
add_self_attention: bool = False,
|
|
cross_attention_norm: Optional[str] = None,
|
|
group_size: int = 32,
|
|
):
|
|
super().__init__()
|
|
self.add_self_attention = add_self_attention
|
|
|
|
|
|
if add_self_attention:
|
|
self.norm1 = AdaGroupNorm(temb_channels, dim, max(1, dim // group_size))
|
|
self.attn1 = Attention(
|
|
query_dim=dim,
|
|
heads=num_attention_heads,
|
|
dim_head=attention_head_dim,
|
|
dropout=dropout,
|
|
bias=attention_bias,
|
|
cross_attention_dim=None,
|
|
cross_attention_norm=None,
|
|
)
|
|
|
|
|
|
self.norm2 = AdaGroupNorm(temb_channels, dim, max(1, dim // group_size))
|
|
self.attn2 = Attention(
|
|
query_dim=dim,
|
|
cross_attention_dim=cross_attention_dim,
|
|
heads=num_attention_heads,
|
|
dim_head=attention_head_dim,
|
|
dropout=dropout,
|
|
bias=attention_bias,
|
|
upcast_attention=upcast_attention,
|
|
cross_attention_norm=cross_attention_norm,
|
|
)
|
|
|
|
def _to_3d(self, hidden_states: torch.FloatTensor, height: int, weight: int) -> torch.FloatTensor:
|
|
return hidden_states.permute(0, 2, 3, 1).reshape(hidden_states.shape[0], height * weight, -1)
|
|
|
|
def _to_4d(self, hidden_states: torch.FloatTensor, height: int, weight: int) -> torch.FloatTensor:
|
|
return hidden_states.permute(0, 2, 1).reshape(hidden_states.shape[0], -1, height, weight)
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.FloatTensor,
|
|
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
|
|
|
|
|
emb: Optional[torch.FloatTensor] = None,
|
|
attention_mask: Optional[torch.FloatTensor] = None,
|
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
|
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
|
) -> torch.FloatTensor:
|
|
cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
|
|
|
|
|
|
if self.add_self_attention:
|
|
norm_hidden_states = self.norm1(hidden_states, emb)
|
|
|
|
height, weight = norm_hidden_states.shape[2:]
|
|
norm_hidden_states = self._to_3d(norm_hidden_states, height, weight)
|
|
|
|
attn_output = self.attn1(
|
|
norm_hidden_states,
|
|
encoder_hidden_states=None,
|
|
attention_mask=attention_mask,
|
|
**cross_attention_kwargs,
|
|
)
|
|
attn_output = self._to_4d(attn_output, height, weight)
|
|
|
|
hidden_states = attn_output + hidden_states
|
|
|
|
|
|
norm_hidden_states = self.norm2(hidden_states, emb)
|
|
|
|
height, weight = norm_hidden_states.shape[2:]
|
|
norm_hidden_states = self._to_3d(norm_hidden_states, height, weight)
|
|
attn_output = self.attn2(
|
|
norm_hidden_states,
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
attention_mask=attention_mask if encoder_hidden_states is None else encoder_attention_mask,
|
|
**cross_attention_kwargs,
|
|
)
|
|
attn_output = self._to_4d(attn_output, height, weight)
|
|
|
|
hidden_states = attn_output + hidden_states
|
|
|
|
return hidden_states
|
|
|