|
import pdb
|
|
|
|
import config
|
|
from pathlib import Path
|
|
import sys
|
|
|
|
PROJECT_ROOT = Path(__file__).absolute().parents[0].absolute()
|
|
sys.path.insert(0, str(PROJECT_ROOT))
|
|
import os
|
|
|
|
import cv2
|
|
import einops
|
|
import numpy as np
|
|
import random
|
|
import time
|
|
import json
|
|
|
|
|
|
from preprocess.openpose.annotator.util import resize_image, HWC3
|
|
from preprocess.openpose.annotator.openpose import OpenposeDetector
|
|
|
|
import argparse
|
|
from PIL import Image
|
|
import torch
|
|
import pdb
|
|
|
|
|
|
|
|
class OpenPose:
|
|
def __init__(self, gpu_id: int):
|
|
|
|
|
|
self.preprocessor = OpenposeDetector()
|
|
|
|
def __call__(self, input_image, resolution=384):
|
|
|
|
if isinstance(input_image, Image.Image):
|
|
input_image = np.asarray(input_image)
|
|
elif type(input_image) == str:
|
|
input_image = np.asarray(Image.open(input_image))
|
|
else:
|
|
raise ValueError
|
|
with torch.no_grad():
|
|
input_image = HWC3(input_image)
|
|
input_image = resize_image(input_image, resolution)
|
|
H, W, C = input_image.shape
|
|
assert (H == 512 and W == 384), 'Incorrect input image shape'
|
|
pose, detected_map = self.preprocessor(input_image, hand_and_face=False)
|
|
|
|
candidate = pose['bodies']['candidate']
|
|
subset = pose['bodies']['subset'][0][:18]
|
|
for i in range(18):
|
|
if subset[i] == -1:
|
|
candidate.insert(i, [0, 0])
|
|
for j in range(i, 18):
|
|
if(subset[j]) != -1:
|
|
subset[j] += 1
|
|
elif subset[i] != i:
|
|
candidate.pop(i)
|
|
for j in range(i, 18):
|
|
if(subset[j]) != -1:
|
|
subset[j] -= 1
|
|
|
|
candidate = candidate[:18]
|
|
|
|
for i in range(18):
|
|
candidate[i][0] *= 384
|
|
candidate[i][1] *= 512
|
|
|
|
keypoints = {"pose_keypoints_2d": candidate}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return keypoints
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
model = OpenPose()
|
|
model('./images/bad_model.jpg')
|
|
|