Spaces:
Runtime error
Runtime error
File size: 3,054 Bytes
de60a6a 458da1c a0110cc eb0bc41 0e08ca7 b1faa28 0e08ca7 d3097eb bd89bd4 a0110cc 77121d6 0e08ca7 77121d6 a0110cc cb85b93 6af81aa 77121d6 458da1c 6af81aa 77121d6 d0b2fc8 0e08ca7 d0b2fc8 5a86410 0e08ca7 77121d6 5a86410 0e08ca7 5a86410 0e08ca7 ed72842 cb85b93 a0110cc cb85b93 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
import gradio as gr
import matplotlib.pyplot as plt
import numpy as np
import os
import soundfile as sf
def main():
# Gradio Interface
with gr.Blocks() as app:
gr.Markdown(
"""
# <div align="center"> Ilaria Audio Analyzer 💖 </div>
Audio Analyzer Software by Ilaria, Help me on [Ko-Fi](https://ko-fi.com/ilariaowo)\n
Special thanks to [Alex Murkoff](https://github.com/alexlnkp) for helping me coding it!
Need help with AI? [Join AI Hub!](https://discord.gg/aihub)
"""
)
with gr.Row():
with gr.Column():
audio_input = gr.Audio(type='filepath')
create_spec_butt = gr.Button(value='Create Spectrogram And Get Info', variant='primary')
with gr.Column():
output_markdown = gr.Markdown(value="", visible=True)
image_output = gr.Image(type='filepath', interactive=False)
create_spec_butt.click(fn=create_spectrogram_and_get_info, inputs=[audio_input], outputs=[output_markdown, image_output])
app.queue(max_size=1022).launch(share=True)
def create_spectrogram_and_get_info(audio_file):
# Clear figure in case it has data in it
plt.clf()
# Read the audio data from the file
audio_data, sample_rate = sf.read(audio_file)
# Convert to mono if it's not mono
if len(audio_data.shape) > 1:
audio_data = np.mean(audio_data, axis=1)
# Create the spectrogram
plt.specgram(audio_data, Fs=sample_rate / 1, NFFT=4096, sides='onesided',
cmap="Reds_r", scale_by_freq=True, scale='dB', mode='magnitude', window=np.hanning(4096))
# Save the spectrogram to a PNG file
plt.savefig('spectrogram.png')
# Get the audio file info
audio_info = sf.info(audio_file)
bit_depth = {'PCM_16': 16, 'FLOAT': 32}.get(audio_info.subtype, 0)
# Convert duration to minutes, seconds, and milliseconds
minutes, seconds = divmod(audio_info.duration, 60)
seconds, milliseconds = divmod(seconds, 1)
milliseconds *= 1000 # convert from seconds to milliseconds
# Convert bitrate to mb/s
bitrate = audio_info.samplerate * audio_info.channels * bit_depth / 8 / 1024 / 1024
# Calculate speed in kbps
speed_in_kbps = audio_info.samplerate * bit_depth / 1000
# Create a table with the audio file info
info_table = f"""
| Information | Value |
| :---: | :---: |
| File Name | {os.path.basename(audio_file)} |
| Duration | {int(minutes)} minutes - {int(seconds)} seconds - {int(milliseconds)} milliseconds |
| Bitrate | {speed_in_kbps} kbp/s |
| Audio Channels | {audio_info.channels} |
| Samples per second | {audio_info.samplerate} Hz |
| Bit per second | {audio_info.samplerate * audio_info.channels * bit_depth} bit/s |
"""
# Return the PNG file of the spectrogram and the info table
return info_table, 'spectrogram.png'
# Create the Gradio interface
main() |