Spaces:
Runtime error
Runtime error
File size: 1,529 Bytes
de60a6a 458da1c a0110cc eb0bc41 9a8d907 d3097eb a0110cc 77121d6 d3097eb 77121d6 a0110cc 9a8d907 6af81aa 77121d6 458da1c 6af81aa 77121d6 d0b2fc8 d3097eb d0b2fc8 5a86410 77121d6 5a86410 d3097eb 5a86410 d3097eb ed72842 d3097eb a0110cc d3097eb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
import gradio as gr
import matplotlib.pyplot as plt
import numpy as np
import os
import soundfile as sf
def create_spectrogram_and_get_info(audio_file):
# Clear figure in case it has data in it
plt.clf()
# Read the audio data from the file
audio_data, sample_rate = sf.read(audio_file)
# Flatten the audio data if it's not mono
audio_data = audio_data.flatten() if len(audio_data.shape) > 1 else audio_data
# Create the spectrogram
plt.specgram(audio_data, Fs=sample_rate / 1, NFFT=4096, sides='onesided',
cmap="Reds_r", scale_by_freq=True, scale='dB', mode='magnitude')
# Save the spectrogram to a PNG file
plt.savefig('spectrogram.png')
# Get the audio file info
audio_info = sf.info(audio_file)
bit_depth = {'PCM_16': 16, 'FLOAT': 32}.get(audio_info.subtype, 0)
# Create a table with the audio file info
info_table = f"""
| Informazione | Valore |
| --- | --- |
| Durata | {audio_info.duration} secondi |
| Campioni al secondo | {audio_info.samplerate} Hz |
| Canali | {audio_info.channels} |
| Bitrate | {audio_info.samplerate * audio_info.channels * bit_depth} bit/s |
| Estensione | {os.path.splitext(audio_file)[1]} |
"""
# Return the PNG file of the spectrogram and the info table
return info_table, 'spectrogram.png'
# Create the Gradio interface
iface = gr.Interface(fn=create_spectrogram_and_get_info, inputs=gr.Audio(type="filepath"), outputs=["markdown", "image"])
iface.launch()
|