TheKnight115's picture
Update app.py
4a7ddd0 verified
raw
history blame
7.83 kB
import streamlit as st
import cv2
import numpy as np
import tempfile
import time
from ultralytics import YOLO
from huggingface_hub import hf_hub_download
from email.mime.text import MIMEText
from email.mime.multipart import MIMEMultipart
from email.mime.base import MIMEBase
from email import encoders
import os
import smtplib
from transformers import AutoModel, AutoProcessor
from PIL import Image, ImageDraw, ImageFont
import re
import torch
# Email credentials
FROM_EMAIL = "[email protected]"
EMAIL_PASSWORD = "cawxqifzqiwjufde" # App-Specific Password
TO_EMAIL = "[email protected]"
SMTP_SERVER = 'smtp.gmail.com'
SMTP_PORT = 465
# Arabic dictionary for converting license plate text
arabic_dict = {
"0": "٠", "1": "١", "2": "٢", "3": "٣", "4": "٤", "5": "٥",
"6": "٦", "7": "٧", "8": "٨", "9": "٩", "A": "ا", "B": "ب",
"J": "ح", "D": "د", "R": "ر", "S": "س", "X": "ص", "T": "ط",
"E": "ع", "G": "ق", "K": "ك", "L": "ل", "Z": "م", "N": "ن",
"H": "ه", "U": "و", "V": "ي", " ": " "
}
# Color mapping for different classes
class_colors = {
0: (0, 255, 0), # Green (Helmet)
1: (255, 0, 0), # Blue (License Plate)
2: (0, 0, 255), # Red (MotorbikeDelivery)
3: (255, 255, 0), # Cyan (MotorbikeSport)
4: (255, 0, 255), # Magenta (No Helmet)
5: (0, 255, 255), # Yellow (Person)
}
# Load the OCR model
processor = AutoProcessor.from_pretrained("stepfun-ai/GOT-OCR2_0", trust_remote_code=True)
model_ocr = AutoModel.from_pretrained("stepfun-ai/GOT-OCR2_0", trust_remote_code=True).to('cuda')
# YOLO inference function
def run_yolo(image):
results = model(image)
return results
# Function to process YOLO results and draw bounding boxes
def process_results(results, image):
boxes = results[0].boxes
for box in boxes:
x1, y1, x2, y2 = map(int, box.xyxy[0])
conf = box.conf[0]
cls = int(box.cls[0])
label = model.names[cls]
color = class_colors.get(cls, (255, 255, 255))
# Draw rectangle and label
cv2.rectangle(image, (x1, y1), (x2, y2), color, 2)
cv2.putText(image, f"{label} {conf:.2f}", (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
return image
# Process uploaded images
def process_image(uploaded_file):
image = np.array(cv2.imdecode(np.frombuffer(uploaded_file.read(), np.uint8), 1))
results = run_yolo(image)
processed_image = process_results(results, image)
processed_image_rgb = cv2.cvtColor(processed_image, cv2.COLOR_BGR2RGB)
st.image(processed_image_rgb, caption='Detected Image', use_column_width=True)
# Process and save uploaded videos
@st.cache_data
def process_video_and_save(uploaded_file):
with tempfile.NamedTemporaryFile(delete=False, suffix='.mp4') as temp_file:
temp_file.write(uploaded_file.read())
temp_file_path = temp_file.name
video = cv2.VideoCapture(temp_file_path)
total_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
frames = []
current_frame = 0
start_time = time.time()
progress_bar = st.progress(0)
progress_text = st.empty()
while True:
ret, frame = video.read()
if not ret:
break
results = run_yolo(frame)
processed_frame = process_results(results, frame)
processed_frame_rgb = cv2.cvtColor(processed_frame, cv2.COLOR_BGR2RGB)
frames.append(processed_frame_rgb)
current_frame += 1
progress_percentage = int((current_frame / total_frames) * 100)
progress_bar.progress(progress_percentage)
progress_text.text(f"Processing frame {current_frame}/{total_frames} ({progress_percentage}%)")
video.release()
output_path = 'processed_video.mp4'
height, width, _ = frames[0].shape
out = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*'mp4v'), 30, (width, height))
for frame in frames:
frame_bgr = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
out.write(frame_bgr)
out.release()
return output_path
# Live video feed processing
def live_video_feed():
stframe = st.empty()
video = cv2.VideoCapture(0)
start_time = time.time()
while True:
ret, frame = video.read()
if not ret:
break
results = run_yolo(frame)
processed_frame = process_results(results, frame)
processed_frame_rgb = cv2.cvtColor(processed_frame, cv2.COLOR_BGR2RGB)
stframe.image(processed_frame_rgb, channels="RGB", use_column_width=True)
elapsed_time = time.time() - start_time
st.write(f"Elapsed Time: {elapsed_time:.2f} seconds")
if st.button("Stop"):
break
video.release()
st.stop()
# Function to filter license plate text
def filter_license_plate_text(license_plate_text):
license_plate_text = re.sub(r'[^A-Z0-9]+', "", license_plate_text)
match = re.search(r'(\d{3,4})\s*([A-Z]{2})', license_plate_text)
return f"{match.group(1)} {match.group(2)}" if match else None
# Function to convert license plate text to Arabic
def convert_to_arabic(license_plate_text):
return "".join(arabic_dict.get(char, char) for char in license_plate_text)
# Function to send email notification with image attachment
def send_email(license_text, violation_image_path, violation_type):
if violation_type == 'no_helmet':
subject = 'تنبيه مخالفة: عدم ارتداء خوذة'
body = f"لعدم ارتداء الخوذة ({license_text}) تم تغريم دراجة نارية التي تحمل لوحة."
elif violation_type == 'in_red_lane':
subject = 'تنبيه مخالفة: دخول المسار الأيسر'
body = f"لدخولها المسار الأيسر ({license_text}) تم تغريم دراجة نارية التي تحمل لوحة."
elif violation_type == 'no_helmet_in_red_lane':
subject = 'تنبيه مخالفة: عدم ارتداء خوذة ودخول المسار الأيسر'
body = f"لعدم ارتداء الخوذة ولدخولها المسار الأيسر ({license_text}) تم تغريم دراجة نارية التي تحمل لوحة."
msg = MIMEMultipart()
msg['From'] = FROM_EMAIL
msg['To'] = TO_EMAIL
msg['Subject'] = subject
msg.attach(MIMEText(body, 'plain'))
if os.path.exists(violation_image_path):
with open(violation_image_path, 'rb') as attachment_file:
part = MIMEBase('application', 'octet-stream')
part.set_payload(attachment_file.read())
encoders.encode_base64(part)
part.add_header('Content-Disposition', f'attachment; filename={os.path.basename(violation_image_path)}')
msg.attach(part)
with smtplib.SMTP_SSL(SMTP_SERVER, SMTP_PORT) as server:
server.login(FROM_EMAIL, EMAIL_PASSWORD)
server.sendmail(FROM_EMAIL, TO_EMAIL, msg.as_string())
print("Email with attachment sent successfully!")
# Streamlit app main function
def main():
model_file = hf_hub_download(repo_id="TheKnight115/Yolov8m", filename="yolov8_Medium.pt")
global model
model = YOLO(model_file)
st.title("Motorbike Violation Detection")
input_type = st.selectbox("Select Input Type", ("Image", "Video", "Live Feed"))
if input_type == "Image":
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
if uploaded_file is not None:
process_image(uploaded_file)
elif input_type == "Video":
uploaded_file = st.file_uploader("Choose a video...", type=["mp4", "mov"])
if uploaded_file is not None:
output_path = process_video_and_save(uploaded_file)
st.video(output_path)
elif input_type == "Live Feed":
live_video_feed()
if __name__ == "__main__":
main()