Spaces:
Running
Running
File size: 10,122 Bytes
6550da2 0a0fad6 6550da2 1289698 0a0fad6 d501233 0a0fad6 6550da2 1289698 6550da2 0a0fad6 6550da2 0a0fad6 6550da2 f748b36 0a0fad6 6550da2 0a0fad6 6550da2 0a0fad6 6550da2 0a0fad6 6550da2 0a0fad6 1289698 0a0fad6 1289698 0a0fad6 1289698 0a0fad6 6550da2 0a0fad6 6550da2 0a0fad6 6550da2 0a0fad6 6550da2 0a0fad6 6550da2 0a0fad6 6550da2 0a0fad6 6550da2 1289698 6550da2 1289698 0a0fad6 6550da2 1289698 6550da2 0a0fad6 6550da2 1289698 6550da2 1289698 6550da2 0a0fad6 6550da2 0a0fad6 1289698 6550da2 1289698 6550da2 1289698 0a0fad6 6550da2 1289698 0a0fad6 6550da2 1289698 6550da2 1289698 0a0fad6 6550da2 1289698 0a0fad6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 |
# processor.py
import cv2
import numpy as np
import os
from ultralytics import YOLO
from transformers import AutoProcessor, AutoModelForCausalLM, pipeline
from PIL import Image, ImageDraw, ImageFont
import re
import smtplib
from email.mime.text import MIMEText
from email.mime.multipart import MIMEMultipart
from email.mime.base import MIMEBase
from email import encoders
import torch
from dotenv import load_dotenv
from transformers import AutoProcessor, AutoModel
# Load environment variables
load_dotenv()
# Email credentials (Use environment variables for security)
FROM_EMAIL = os.getenv("FROM_EMAIL")
EMAIL_PASSWORD = os.getenv("EMAIL_PASSWORD")
TO_EMAIL = os.getenv("TO_EMAIL")
SMTP_SERVER = 'smtp.gmail.com'
SMTP_PORT = 465
# Arabic dictionary for converting license plate text
arabic_dict = {
"0": "٠", "1": "١", "2": "٢", "3": "٣", "4": "٤", "5": "٥",
"6": "٦", "7": "٧", "8": "٨", "9": "٩", "A": "ا", "B": "ب",
"J": "ح", "D": "د", "R": "ر", "S": "س", "X": "ص", "T": "ط",
"E": "ع", "G": "ق", "K": "ك", "L": "ل", "Z": "م", "N": "ن",
"H": "ه", "U": "و", "V": "ي", " ": " "
}
# Define class colors
class_colors = {
0: (0, 255, 0), # Green (Helmet)
1: (255, 0, 0), # Blue (License Plate)
2: (0, 0, 255), # Red (MotorbikeDelivery)
3: (255, 255, 0), # Cyan (MotorbikeSport)
4: (255, 0, 255), # Magenta (No Helmet)
5: (0, 255, 255), # Yellow (Person)
}
# Load the OCR model
processor = AutoProcessor.from_pretrained("stepfun-ai/GOT-OCR2_0", trust_remote_code=True)
model_ocr = AutoModel.from_pretrained("stepfun-ai/GOT-OCR2_0", trust_remote_code=True).to('cuda')
# Load YOLO model
# Ensure the path to the model is correct
model = YOLO('yolov8_Medium.pt') # Update the path as needed
# Define lane area coordinates (example coordinates)
red_lane = np.array([[2,1583],[1,1131],[1828,1141],[1912,1580]], np.int32)
# Dictionary to track violations per license plate
violations_dict = {}
def filter_license_plate_text(license_plate_text):
"""Filter and format the license plate text."""
license_plate_text = re.sub(r'[^A-Z0-9]+', "", license_plate_text)
match = re.search(r'(\d{4})\s*([A-Z]{2})', license_plate_text)
return f"{match.group(1)} {match.group(2)}" if match else None
def convert_to_arabic(license_plate_text):
"""Convert license plate text from Latin to Arabic script."""
return "".join(arabic_dict.get(char, char) for char in license_plate_text)
def send_email(license_text, violation_image_path, violation_type):
"""Send an email notification with violation details and image attachment."""
# Define the subject and body based on violation type
subjects = {
'No Helmet, In Red Lane': 'تنبيه مخالفة: عدم ارتداء خوذة ودخول المسار الأيسر',
'In Red Lane': 'تنبيه مخالفة: دخول المسار الأيسر',
'No Helmet': 'تنبيه مخالفة: عدم ارتداء خوذة'
}
bodies = {
'No Helmet, In Red Lane': f"لعدم ارتداء الخوذة ولدخولها المسار الأيسر ({license_text}) تم تغريم دراجة نارية التي تحمل لوحة",
'In Red Lane': f"لدخولها المسار الأيسر ({license_text}) تم تغريم دراجة نارية التي تحمل لوحة",
'No Helmet': f"لعدم ارتداء الخوذة ({license_text}) تم تغريم دراجة نارية التي تحمل لوحة"
}
subject = subjects.get(violation_type, 'تنبيه مخالفة')
body = bodies.get(violation_type, f"تم تغريم دراجة نارية التي تحمل لوحة ({license_text}) بسبب مخالفة.")
# Create the email message
msg = MIMEMultipart()
msg['From'] = FROM_EMAIL
msg['To'] = TO_EMAIL
msg['Subject'] = subject
msg.attach(MIMEText(body, 'plain'))
# Attach the violation image
if os.path.exists(violation_image_path):
with open(violation_image_path, 'rb') as attachment_file:
part = MIMEBase('application', 'octet-stream')
part.set_payload(attachment_file.read())
encoders.encode_base64(part)
part.add_header('Content-Disposition', f'attachment; filename={os.path.basename(violation_image_path)}')
msg.attach(part)
# Send the email using SMTP
try:
with smtplib.SMTP_SSL(SMTP_SERVER, SMTP_PORT) as server:
server.login(FROM_EMAIL, EMAIL_PASSWORD)
server.sendmail(FROM_EMAIL, TO_EMAIL, msg.as_string())
print("Email with attachment sent successfully!")
except Exception as e:
print(f"Failed to send email: {e}")
def draw_text_pil(img, text, position, font_path, font_size, color):
"""Draw text on an image using PIL for better font support."""
img_pil = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
draw = ImageDraw.Draw(img_pil)
try:
font = ImageFont.truetype(font_path, size=font_size)
except IOError:
print(f"Font file not found at {font_path}. Using default font.")
font = ImageFont.load_default()
draw.text(position, text, font=font, fill=color)
return cv2.cvtColor(np.array(img_pil), cv2.COLOR_RGB2BGR)
def process_frame(frame, font_path, violation_image_path='violation.jpg'):
"""Process a single video frame for violations."""
results = model.track(frame)
for box in results[0].boxes:
x1, y1, x2, y2 = map(int, box.xyxy[0].cpu().numpy())
label = model.names[int(box.cls)]
color = class_colors.get(int(box.cls), (255, 255, 255))
confidence = box.conf[0].item()
# Draw bounding box and label
cv2.rectangle(frame, (x1, y1), (x2, y2), color, 3)
cv2.putText(frame, f'{label}: {confidence:.2f}', (x1, y1 - 10),
cv2.FONT_HERSHEY_SIMPLEX, 0.6, color, 2)
if label == 'MotorbikeDelivery' and confidence >= 0.4:
motorbike_crop = frame[max(0, y1 - 50):y2, x1:x2]
delivery_center = ((x1 + x2) // 2, y2)
in_red_lane = cv2.pointPolygonTest(red_lane, delivery_center, False)
violation_types = []
if in_red_lane >= 0:
violation_types.append("In Red Lane")
# Detect sub-objects within the motorbike crop
sub_results = model(motorbike_crop)
for sub_box in sub_results[0].boxes:
sub_x1, sub_y1, sub_x2, sub_y2 = map(int, sub_box.xyxy[0].cpu().numpy())
sub_label = model.names[int(sub_box.cls)]
if sub_label == 'No_Helmet':
violation_types.append("No Helmet")
elif sub_label == 'License_plate':
license_crop = motorbike_crop[sub_y1:sub_y2, sub_x1:sub_x2]
if violation_types:
# Save violation image
cv2.imwrite(violation_image_path, frame)
license_plate_pil = Image.fromarray(cv2.cvtColor(license_crop, cv2.COLOR_BGR2RGB))
license_plate_pil.save('license_plate.png')
# Perform OCR
try:
ocr_result = ocr_pipeline(Image.open('license_plate.png'))
license_plate_text = ocr_result[0]['generated_text'] if ocr_result else ""
except Exception as e:
print(f"OCR failed: {e}")
license_plate_text = ""
filtered_text = filter_license_plate_text(license_plate_text)
if filtered_text:
if filtered_text not in violations_dict:
violations_dict[filtered_text] = violation_types
send_email(filtered_text, violation_image_path, ', '.join(violation_types))
else:
current = set(violations_dict[filtered_text])
new = set(violation_types)
updated = current | new
if updated != current:
violations_dict[filtered_text] = list(updated)
send_email(filtered_text, violation_image_path, ', '.join(updated))
arabic_text = convert_to_arabic(filtered_text)
frame = draw_text_pil(frame, filtered_text, (x1, y2 + 30), font_path, 30, (255, 255, 255))
frame = draw_text_pil(frame, arabic_text, (x1, y2 + 60), font_path, 30, (0, 255, 0))
return frame
def process_image(image_path, font_path, violation_image_path='violation.jpg'):
"""Process an uploaded image and return the processed image."""
frame = cv2.imread(image_path)
if frame is None:
print("Error loading image")
return None
processed = process_frame(frame, font_path, violation_image_path)
return processed
def process_video(video_path, font_path, violation_image_path='violation.jpg'):
"""Process a video file and save the processed video."""
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
print("Error opening video file")
return None
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
output_video_path = 'output_violation.mp4'
fps = cap.get(cv2.CAP_PROP_FPS)
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
out = cv2.VideoWriter(output_video_path, fourcc, fps, (width, height))
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
# Optionally draw red lane
cv2.polylines(frame, [red_lane], isClosed=True, color=(0, 0, 255), thickness=3)
processed_frame = process_frame(frame, font_path, violation_image_path)
out.write(processed_frame)
cap.release()
out.release()
return output_video_path |