Spaces:
Runtime error
Runtime error
pragnakalp
commited on
Commit
·
e2313eb
1
Parent(s):
235e230
Update app.py
Browse files
app.py
CHANGED
@@ -23,43 +23,45 @@ t5_model = AutoModelWithLMHead.from_pretrained(t5_model_path)
|
|
23 |
t5_tokenizer = AutoTokenizer.from_pretrained("mrm8488/t5-base-finetuned-summarize-news")
|
24 |
|
25 |
def generate_text_summarization(sum_type,article):
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
|
|
|
|
63 |
|
64 |
input_text=gr.Textbox(lines=5, label="Paragraph")
|
65 |
input_radio= gr.Radio(['BART Extractive Text Summarization','T5 Abstractive Text Summarization'],label='Select summarization',value='BART Extractive Text Summarization')
|
|
|
23 |
t5_tokenizer = AutoTokenizer.from_pretrained("mrm8488/t5-base-finetuned-summarize-news")
|
24 |
|
25 |
def generate_text_summarization(sum_type,article):
|
26 |
+
if article.strip():
|
27 |
+
if sum_type == 'BART Extractive Text Summarization':
|
28 |
+
inputs = bart_extractive_tokenizer([article], max_length=1024, return_tensors='pt')
|
29 |
+
summary_ids = bart_extractive_model.generate(inputs['input_ids'], num_beams=4, min_length=60, max_length=300, early_stopping=True)
|
30 |
+
|
31 |
+
summary = [bart_extractive_tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=False) for g in summary_ids]
|
32 |
+
print(type(summary))
|
33 |
+
print(summary)
|
34 |
+
summary= summary[0]
|
35 |
+
doc = readablility_nlp(summary)
|
36 |
+
summary_score = round(doc._.flesch_kincaid_reading_ease,2)
|
37 |
+
summarized_data = {
|
38 |
+
"summary" : summary,
|
39 |
+
"score" : summary_score
|
40 |
+
}
|
41 |
+
|
42 |
+
if sum_type == 'T5 Abstractive Text Summarization':
|
43 |
+
inputs = t5_tokenizer.encode(article, return_tensors="pt", max_length=2048)
|
44 |
+
summary_ids = t5_model.generate(inputs,
|
45 |
+
num_beams=2,
|
46 |
+
no_repeat_ngram_size=2,
|
47 |
+
min_length=100,
|
48 |
+
max_length=300,
|
49 |
+
early_stopping=True)
|
50 |
+
|
51 |
+
summary = t5_tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
52 |
+
print(type(summary))
|
53 |
+
print(summary)
|
54 |
+
doc = readablility_nlp(summary)
|
55 |
+
summary_score = round(doc._.flesch_kincaid_reading_ease,2)
|
56 |
+
summarized_data = {
|
57 |
+
"summary" : summary,
|
58 |
+
"score" : summary_score
|
59 |
+
}
|
60 |
+
|
61 |
+
save_data_and_sendmail(paragraph, sum_type, result_dic)
|
62 |
+
return summary
|
63 |
+
else:
|
64 |
+
raise gr.Error("Please enter text in inputbox!!!!")
|
65 |
|
66 |
input_text=gr.Textbox(lines=5, label="Paragraph")
|
67 |
input_radio= gr.Radio(['BART Extractive Text Summarization','T5 Abstractive Text Summarization'],label='Select summarization',value='BART Extractive Text Summarization')
|