That1BrainCell
commited on
Upload 3 files
Browse files- embedding.py +255 -0
- preprocess.py +168 -0
- search.py +227 -0
embedding.py
ADDED
@@ -0,0 +1,255 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import requests
|
2 |
+
import json
|
3 |
+
import os
|
4 |
+
import concurrent.futures
|
5 |
+
import random
|
6 |
+
from langchain_google_genai import ChatGoogleGenerativeAI
|
7 |
+
from langchain_community.document_loaders import WebBaseLoader
|
8 |
+
from langchain_community.document_loaders import PyPDFLoader
|
9 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
10 |
+
import google.generativeai as genai
|
11 |
+
|
12 |
+
|
13 |
+
gemini = ChatGoogleGenerativeAI(model="gemini-1.0-pro-001",google_api_key='AIzaSyBmZtXjJgp7yIAo9joNCZGSxK9PbGMcVaA',temperature = 0.1)
|
14 |
+
gemini1 = ChatGoogleGenerativeAI(model="gemini-1.0-pro-001",google_api_key='AIzaSyABsaDjPujPCBlz4LLxcXDX_bDA9uEL7Xc',temperature = 0.1)
|
15 |
+
gemini2 = ChatGoogleGenerativeAI(model="gemini-1.0-pro-001",google_api_key='AIzaSyBCIQgt1uK7-sJH5Afg5vUZ99EWkx5gSU0',temperature = 0.1)
|
16 |
+
gemini3 = ChatGoogleGenerativeAI(model="gemini-1.0-pro-001",google_api_key='AIzaSyBot9W5Q-BKQ66NAYRUmVeloXWEbXOXTmM',temperature = 0.1)
|
17 |
+
|
18 |
+
genai.configure(api_key="AIzaSyBmZtXjJgp7yIAo9joNCZGSxK9PbGMcVaA")
|
19 |
+
|
20 |
+
|
21 |
+
def pdf_extractor(link):
|
22 |
+
text = ''
|
23 |
+
|
24 |
+
try:
|
25 |
+
loader = PyPDFLoader(link)
|
26 |
+
pages = loader.load_and_split()
|
27 |
+
|
28 |
+
for page in pages:
|
29 |
+
text+=page.page_content
|
30 |
+
except:
|
31 |
+
pass
|
32 |
+
|
33 |
+
return [text]
|
34 |
+
|
35 |
+
def web_extractor(link):
|
36 |
+
text = ''
|
37 |
+
|
38 |
+
try:
|
39 |
+
loader = WebBaseLoader(link)
|
40 |
+
pages = loader.load_and_split()
|
41 |
+
|
42 |
+
for page in pages:
|
43 |
+
text+=page.page_content
|
44 |
+
except:
|
45 |
+
pass
|
46 |
+
|
47 |
+
return [text]
|
48 |
+
|
49 |
+
|
50 |
+
def feature_extraction(tag, history , context):
|
51 |
+
|
52 |
+
prompt = f'''
|
53 |
+
You are an intelligent assistant tasked with updating product information. You have two data sources:
|
54 |
+
1. Tag_History: Previously gathered information about the product.
|
55 |
+
2. Tag_Context: New data that might contain additional details.
|
56 |
+
|
57 |
+
Your job is to read the Tag_Context and update the relevant field in the Tag_History with any new details found. The field to be updated is the {tag} FIELD.
|
58 |
+
|
59 |
+
Guidelines:
|
60 |
+
- Only add new details that are relevant to the {tag} FIELD.
|
61 |
+
- Do not add or modify any other fields in the Tag_History.
|
62 |
+
- Ensure your response is in coherent sentences, integrating the new details seamlessly into the existing information.
|
63 |
+
|
64 |
+
Here is the data:
|
65 |
+
|
66 |
+
Tag_Context: {str(context)}
|
67 |
+
Tag_History: {history}
|
68 |
+
|
69 |
+
Respond with the updated Tag_History.
|
70 |
+
'''
|
71 |
+
|
72 |
+
model = random.choice([gemini,gemini1])
|
73 |
+
result = model.invoke(prompt)
|
74 |
+
|
75 |
+
return result.content
|
76 |
+
|
77 |
+
def detailed_feature_extraction(find, context):
|
78 |
+
|
79 |
+
prompt = f'''
|
80 |
+
You are an intelligent assistant tasked with finding product information. You have one data source and one output format:
|
81 |
+
1. Context: The gathered information about the product.
|
82 |
+
2. Format: Details which need to be filled based on Context.
|
83 |
+
|
84 |
+
Your job is to read the Context and update the relevant field in Format using Context.
|
85 |
+
|
86 |
+
Guidelines:
|
87 |
+
- Only add details that are relevant to the individual FIELD.
|
88 |
+
- Do not add or modify any other fields in the Format.
|
89 |
+
- If nothing found return None.
|
90 |
+
|
91 |
+
Here is the data:
|
92 |
+
|
93 |
+
The Context is {str(context)}
|
94 |
+
The Format is {str(find)}
|
95 |
+
'''
|
96 |
+
|
97 |
+
model = random.choice([gemini,gemini1,gemini2,gemini3])
|
98 |
+
result = model.invoke(prompt)
|
99 |
+
|
100 |
+
return result.content
|
101 |
+
|
102 |
+
def detailed_history(history):
|
103 |
+
|
104 |
+
details = {
|
105 |
+
"Introduction": {
|
106 |
+
"Product Name": None,
|
107 |
+
"Overview of the product": None,
|
108 |
+
"Purpose of the manual": None,
|
109 |
+
"Audience": None,
|
110 |
+
"Additional Details": None
|
111 |
+
},
|
112 |
+
"Specifications": {
|
113 |
+
"Technical specifications": None,
|
114 |
+
"Performance metrics": None,
|
115 |
+
"Additional Details": None
|
116 |
+
},
|
117 |
+
"Product Overview": {
|
118 |
+
"Product features": None,
|
119 |
+
"Key components and parts": None,
|
120 |
+
"Additional Details": None
|
121 |
+
},
|
122 |
+
"Safety Information": {
|
123 |
+
"Safety warnings and precautions": None,
|
124 |
+
"Compliance and certification information": None,
|
125 |
+
"Additional Details": None
|
126 |
+
},
|
127 |
+
"Installation Instructions": {
|
128 |
+
"Unboxing and inventory checklist": None,
|
129 |
+
"Step-by-step installation guide": None,
|
130 |
+
"Required tools and materials": None,
|
131 |
+
"Additional Details": None
|
132 |
+
},
|
133 |
+
"Setup and Configuration": {
|
134 |
+
"Initial setup procedures": None,
|
135 |
+
"Configuration settings": None,
|
136 |
+
"Troubleshooting setup issues": None,
|
137 |
+
"Additional Details": None
|
138 |
+
},
|
139 |
+
"Operation Instructions": {
|
140 |
+
"How to use the product": None,
|
141 |
+
"Detailed instructions for different functionalities": None,
|
142 |
+
"User interface guide": None,
|
143 |
+
"Additional Details": None
|
144 |
+
},
|
145 |
+
"Maintenance and Care": {
|
146 |
+
"Cleaning instructions": None,
|
147 |
+
"Maintenance schedule": None,
|
148 |
+
"Replacement parts and accessories": None,
|
149 |
+
"Additional Details": None
|
150 |
+
},
|
151 |
+
"Troubleshooting": {
|
152 |
+
"Common issues and solutions": None,
|
153 |
+
"Error messages and their meanings": None,
|
154 |
+
"Support Information": None,
|
155 |
+
"Additional Details": None
|
156 |
+
},
|
157 |
+
"Warranty Information": {
|
158 |
+
"Terms and Conditions": None,
|
159 |
+
"Service and repair information": None,
|
160 |
+
"Additional Details": None
|
161 |
+
},
|
162 |
+
"Legal Information": {
|
163 |
+
"Copyright information": None,
|
164 |
+
"Trademarks and patents": None,
|
165 |
+
"Disclaimers": None,
|
166 |
+
"Additional Details": None
|
167 |
+
|
168 |
+
}
|
169 |
+
}
|
170 |
+
|
171 |
+
for key,val in history.items():
|
172 |
+
|
173 |
+
find = details[key]
|
174 |
+
|
175 |
+
details[key] = str(detailed_feature_extraction(find,val))
|
176 |
+
|
177 |
+
return details
|
178 |
+
|
179 |
+
|
180 |
+
def get_embeddings(link):
|
181 |
+
|
182 |
+
print(f"\nCreating Embeddings ----- {link}")
|
183 |
+
history = {
|
184 |
+
"Introduction": "",
|
185 |
+
"Specifications": "",
|
186 |
+
"Product Overview": "",
|
187 |
+
"Safety Information": "",
|
188 |
+
"Installation Instructions": "",
|
189 |
+
"Setup and Configuration": "",
|
190 |
+
"Operation Instructions": "",
|
191 |
+
"Maintenance and Care": "",
|
192 |
+
"Troubleshooting": "",
|
193 |
+
"Warranty Information": "",
|
194 |
+
"Legal Information": ""
|
195 |
+
}
|
196 |
+
|
197 |
+
# Extract Text -----------------------------
|
198 |
+
print("Extracting Text")
|
199 |
+
if link[-3:] == '.md' or link[8:11] == 'en.':
|
200 |
+
text = web_extractor(link)
|
201 |
+
else:
|
202 |
+
text = pdf_extractor(link)
|
203 |
+
|
204 |
+
# Create Chunks ----------------------------
|
205 |
+
print("Writing Tag Data")
|
206 |
+
chunks = text_splitter.create_documents(text)
|
207 |
+
|
208 |
+
for chunk in chunks:
|
209 |
+
|
210 |
+
with concurrent.futures.ThreadPoolExecutor() as executor:
|
211 |
+
future_to_key = {
|
212 |
+
executor.submit(
|
213 |
+
feature_extraction, f"Product {key}", history[key], chunk.page_content
|
214 |
+
): key for key in history
|
215 |
+
}
|
216 |
+
for future in concurrent.futures.as_completed(future_to_key):
|
217 |
+
key = future_to_key[future]
|
218 |
+
try:
|
219 |
+
response = future.result()
|
220 |
+
history[key] = response
|
221 |
+
except Exception as e:
|
222 |
+
print(f"Error processing {key}: {e}")
|
223 |
+
|
224 |
+
# history = detailed_history(history)
|
225 |
+
print("Creating Vectors")
|
226 |
+
print(history)
|
227 |
+
genai_embeddings=[]
|
228 |
+
|
229 |
+
for tag in history:
|
230 |
+
try:
|
231 |
+
result = genai.embed_content(
|
232 |
+
model="models/embedding-001",
|
233 |
+
content=history[tag],
|
234 |
+
task_type="retrieval_document")
|
235 |
+
genai_embeddings.append(result['embedding'])
|
236 |
+
except:
|
237 |
+
genai_embeddings.append([0]*768)
|
238 |
+
|
239 |
+
|
240 |
+
return history,genai_embeddings
|
241 |
+
|
242 |
+
global text_splitter
|
243 |
+
global data
|
244 |
+
global history
|
245 |
+
|
246 |
+
|
247 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
248 |
+
chunk_size = 10000,
|
249 |
+
chunk_overlap = 100,
|
250 |
+
separators = ["",''," "]
|
251 |
+
)
|
252 |
+
|
253 |
+
|
254 |
+
if __name__ == '__main__':
|
255 |
+
pass
|
preprocess.py
ADDED
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import requests
|
2 |
+
import json
|
3 |
+
import random
|
4 |
+
import concurrent.futures
|
5 |
+
from concurrent.futures import ThreadPoolExecutor
|
6 |
+
from langchain_community.document_loaders import PyPDFLoader
|
7 |
+
from langdetect import detect_langs
|
8 |
+
import requests
|
9 |
+
from PyPDF2 import PdfReader
|
10 |
+
from io import BytesIO
|
11 |
+
from langchain_community.document_loaders import WebBaseLoader
|
12 |
+
from langchain_google_genai import ChatGoogleGenerativeAI
|
13 |
+
import logging
|
14 |
+
|
15 |
+
data = False
|
16 |
+
seen = set()
|
17 |
+
|
18 |
+
# API Urls -----
|
19 |
+
|
20 |
+
# main_url = "http://127.0.0.1:5000/search/all"
|
21 |
+
main_url = "http://127.0.0.1:8000/search/all"
|
22 |
+
# main_product = "Samsung Galaxy s23 ultra"
|
23 |
+
|
24 |
+
# Revelevance Checking Models -----
|
25 |
+
gemini = ChatGoogleGenerativeAI(model="gemini-1.0-pro-001",google_api_key='AIzaSyBmZtXjJgp7yIAo9joNCZGSxK9PbGMcVaA',temperature = 0.1)
|
26 |
+
gemini1 = ChatGoogleGenerativeAI(model="gemini-1.0-pro-001",google_api_key='AIzaSyABsaDjPujPCBlz4LLxcXDX_bDA9uEL7Xc',temperature = 0.1)
|
27 |
+
gemini2 = ChatGoogleGenerativeAI(model="gemini-1.0-pro-001",google_api_key='AIzaSyBCIQgt1uK7-sJH5Afg5vUZ99EWkx5gSU0',temperature = 0.1)
|
28 |
+
gemini3 = ChatGoogleGenerativeAI(model="gemini-1.0-pro-001",google_api_key='AIzaSyBot9W5Q-BKQ66NAYRUmVeloXWEbXOXTmM',temperature = 0.1)
|
29 |
+
|
30 |
+
|
31 |
+
API_URL = "https://api-inference.huggingface.co/models/google/flan-t5-xxl"
|
32 |
+
headers = {"Authorization": "Bearer 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"}
|
33 |
+
|
34 |
+
# Error Debug
|
35 |
+
logging.basicConfig(level=logging.INFO)
|
36 |
+
|
37 |
+
|
38 |
+
def get_links(main_product,api_key):
|
39 |
+
params = {
|
40 |
+
"API_KEY": f"{api_key}",
|
41 |
+
"product": f"{main_product}",
|
42 |
+
}
|
43 |
+
|
44 |
+
# Flask
|
45 |
+
response = requests.get(main_url, params=params)
|
46 |
+
|
47 |
+
# FastAPI
|
48 |
+
# response = requests.post(main_url, json=params)
|
49 |
+
|
50 |
+
|
51 |
+
if response.status_code == 200:
|
52 |
+
results = response.json()
|
53 |
+
with open('data.json', 'w') as f:
|
54 |
+
json.dump(results, f)
|
55 |
+
else:
|
56 |
+
print(f"Failed to fetch results: {response.status_code}")
|
57 |
+
|
58 |
+
|
59 |
+
|
60 |
+
def language_preprocess(text):
|
61 |
+
try:
|
62 |
+
if detect_langs(text)[0].lang == 'en':
|
63 |
+
return True
|
64 |
+
return False
|
65 |
+
except:
|
66 |
+
return False
|
67 |
+
|
68 |
+
|
69 |
+
def relevant(product, similar_product, content):
|
70 |
+
|
71 |
+
try:
|
72 |
+
payload = { "inputs": f'''Do you think that the given content is similar to {similar_product} and {product}, just Respond True or False \nContent for similar product: {content}'''}
|
73 |
+
|
74 |
+
# response = requests.post(API_URL, headers=headers, json=payload)
|
75 |
+
# output = response.json()
|
76 |
+
# return bool(output[0]['generated_text'])
|
77 |
+
|
78 |
+
model = random.choice([gemini,gemini1,gemini2,gemini3])
|
79 |
+
result = model.invoke(f'''Do you think that the given content is similar to {similar_product} and {product}, just Respond True or False \nContent for similar product: {content}''')
|
80 |
+
return bool(result)
|
81 |
+
|
82 |
+
except:
|
83 |
+
return False
|
84 |
+
|
85 |
+
|
86 |
+
|
87 |
+
def download_pdf(url, timeout=10):
|
88 |
+
try:
|
89 |
+
response = requests.get(url, timeout=timeout)
|
90 |
+
response.raise_for_status()
|
91 |
+
return BytesIO(response.content)
|
92 |
+
|
93 |
+
except requests.RequestException as e:
|
94 |
+
logging.error(f"PDF download error: {e}")
|
95 |
+
return None
|
96 |
+
|
97 |
+
def extract_text_from_pdf(pdf_file, pages):
|
98 |
+
reader = PdfReader(pdf_file)
|
99 |
+
extracted_text = ""
|
100 |
+
|
101 |
+
l = len(reader.pages)
|
102 |
+
|
103 |
+
try:
|
104 |
+
for page_num in pages:
|
105 |
+
if page_num < l:
|
106 |
+
page = reader.pages[page_num]
|
107 |
+
extracted_text += page.extract_text() + "\n"
|
108 |
+
else:
|
109 |
+
print(f"Page {page_num} does not exist in the document.")
|
110 |
+
|
111 |
+
return extracted_text
|
112 |
+
|
113 |
+
except:
|
114 |
+
return 'हे चालत नाही'
|
115 |
+
|
116 |
+
def extract_text_online(link):
|
117 |
+
|
118 |
+
loader = WebBaseLoader(link)
|
119 |
+
pages = loader.load_and_split()
|
120 |
+
|
121 |
+
text = ''
|
122 |
+
|
123 |
+
for page in pages[:3]:
|
124 |
+
text+=page.page_content
|
125 |
+
|
126 |
+
return text
|
127 |
+
|
128 |
+
|
129 |
+
def process_link(link, main_product, similar_product):
|
130 |
+
if link in seen:
|
131 |
+
return None
|
132 |
+
seen.add(link)
|
133 |
+
try:
|
134 |
+
if link[-3:]=='.md' or link[8:11] == 'en.':
|
135 |
+
text = extract_text_online(link)
|
136 |
+
else:
|
137 |
+
pdf_file = download_pdf(link)
|
138 |
+
text = extract_text_from_pdf(pdf_file, [0, 2, 4])
|
139 |
+
|
140 |
+
if language_preprocess(text):
|
141 |
+
if relevant(main_product, similar_product, text):
|
142 |
+
print("Accepted",link)
|
143 |
+
return link
|
144 |
+
except:
|
145 |
+
pass
|
146 |
+
print("NOT Accepted",link)
|
147 |
+
return None
|
148 |
+
|
149 |
+
def filtering(urls, main_product, similar_product):
|
150 |
+
res = []
|
151 |
+
|
152 |
+
print(f"Filtering Links of ---- {similar_product}")
|
153 |
+
# Main Preprocess ------------------------------
|
154 |
+
with ThreadPoolExecutor() as executor:
|
155 |
+
futures = {executor.submit(process_link, link, main_product, similar_product): link for link in urls}
|
156 |
+
for future in concurrent.futures.as_completed(futures):
|
157 |
+
result = future.result()
|
158 |
+
if result is not None:
|
159 |
+
res.append(result)
|
160 |
+
|
161 |
+
return res
|
162 |
+
|
163 |
+
|
164 |
+
# Main Functions -------------------------------------------------->
|
165 |
+
|
166 |
+
# get_links()
|
167 |
+
# preprocess()
|
168 |
+
|
search.py
ADDED
@@ -0,0 +1,227 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Library Imports
|
2 |
+
import requests
|
3 |
+
from bs4 import BeautifulSoup
|
4 |
+
from googlesearch import search
|
5 |
+
from duckduckgo_search import DDGS
|
6 |
+
import concurrent.futures
|
7 |
+
import re
|
8 |
+
|
9 |
+
|
10 |
+
|
11 |
+
# Search Functions -------------------------------------------------------------->
|
12 |
+
|
13 |
+
# Function to search DuckDuckGo
|
14 |
+
def search_duckduckgo(query):
|
15 |
+
print("Fetching Duckduckgo Links -----")
|
16 |
+
try:
|
17 |
+
results = DDGS().text(f"{query} manual filetype:pdf", max_results=5)
|
18 |
+
return [res['href'] for res in results]
|
19 |
+
except:
|
20 |
+
return []
|
21 |
+
|
22 |
+
# Function to search Google
|
23 |
+
def search_google(query):
|
24 |
+
print("Fetching Google Links -----")
|
25 |
+
|
26 |
+
links = []
|
27 |
+
try:
|
28 |
+
api_key = 'AIzaSyDV_uJwrgNtawqtl6GDfeUj6NqO-H1tA4c'
|
29 |
+
search_engine_id = 'c4ca951b9fc6949cb'
|
30 |
+
|
31 |
+
url = f"https://www.googleapis.com/customsearch/v1"
|
32 |
+
params = {
|
33 |
+
"key": api_key,
|
34 |
+
"cx": search_engine_id,
|
35 |
+
"q": query + " manual filetype:pdf"
|
36 |
+
}
|
37 |
+
|
38 |
+
response = requests.get(url, params=params)
|
39 |
+
results = response.json()
|
40 |
+
|
41 |
+
for item in results.get('items', []):
|
42 |
+
links.append(item['link'])
|
43 |
+
except:
|
44 |
+
pass
|
45 |
+
|
46 |
+
try:
|
47 |
+
extension = "ext:pdf"
|
48 |
+
for result in search(query + " manual " + extension, num_results=5):
|
49 |
+
if result.endswith('.pdf'):
|
50 |
+
links.append(result)
|
51 |
+
except:
|
52 |
+
pass
|
53 |
+
|
54 |
+
return links
|
55 |
+
|
56 |
+
# Function to search Internet Archive
|
57 |
+
def search_archive(query):
|
58 |
+
print("Fetching Archieve Links -----")
|
59 |
+
|
60 |
+
try:
|
61 |
+
url = "https://archive.org/advancedsearch.php"
|
62 |
+
params = {
|
63 |
+
'q': f'{query} manual',
|
64 |
+
'fl[]': ['identifier', 'title', 'format'],
|
65 |
+
'rows': 50,
|
66 |
+
'page': 1,
|
67 |
+
'output': 'json'
|
68 |
+
}
|
69 |
+
|
70 |
+
# Make the request
|
71 |
+
response = requests.get(url, params=params)
|
72 |
+
data = response.json()
|
73 |
+
|
74 |
+
# Function to extract hyperlinks from a webpage
|
75 |
+
def extract_hyperlinks(url):
|
76 |
+
# Send a GET request to the URL
|
77 |
+
response = requests.get(url)
|
78 |
+
|
79 |
+
# Check if the request was successful
|
80 |
+
if response.status_code == 200:
|
81 |
+
# Parse the HTML content of the page
|
82 |
+
soup = BeautifulSoup(response.text, 'html.parser')
|
83 |
+
|
84 |
+
# Find all <a> tags (hyperlinks)
|
85 |
+
for link in soup.find_all('a', href=True):
|
86 |
+
href = link['href']
|
87 |
+
if href.endswith('.pdf'):
|
88 |
+
pdf_files.append(url+'/'+href)
|
89 |
+
if href.endswith('.iso'):
|
90 |
+
# If the link ends with .iso, follow the link and extract .pdf hyperlinks
|
91 |
+
extract_pdf_from_iso(url+'/'+href+'/')
|
92 |
+
|
93 |
+
# Function to extract .pdf hyperlinks from an .iso file
|
94 |
+
def extract_pdf_from_iso(iso_url):
|
95 |
+
# Send a GET request to the ISO URL
|
96 |
+
iso_response = requests.get(iso_url)
|
97 |
+
|
98 |
+
# Check if the request was successful
|
99 |
+
if iso_response.status_code == 200:
|
100 |
+
# Parse the HTML content of the ISO page
|
101 |
+
iso_soup = BeautifulSoup(iso_response.text, 'html.parser')
|
102 |
+
|
103 |
+
# Find all <a> tags (hyperlinks) in the ISO page
|
104 |
+
for link in iso_soup.find_all('a', href=True):
|
105 |
+
href = link['href']
|
106 |
+
if href.endswith('.pdf'):
|
107 |
+
pdf_files.append('https:'+href)
|
108 |
+
|
109 |
+
pdf_files = []
|
110 |
+
|
111 |
+
def process_doc(doc):
|
112 |
+
identifier = doc.get('identifier', 'N/A')
|
113 |
+
# title = doc.get('title', 'N/A')
|
114 |
+
# format = doc.get('format', 'N/A')
|
115 |
+
pdf_link = f"https://archive.org/download/{identifier}"
|
116 |
+
extract_hyperlinks(pdf_link)
|
117 |
+
|
118 |
+
with concurrent.futures.ThreadPoolExecutor() as executor:
|
119 |
+
futures = [executor.submit(process_doc, doc) for doc in data['response']['docs']]
|
120 |
+
|
121 |
+
# Optionally, wait for all futures to complete and handle any exceptions
|
122 |
+
for future in concurrent.futures.as_completed(futures):
|
123 |
+
try:
|
124 |
+
future.result() # This will raise an exception if the function call raised
|
125 |
+
except Exception as exc:
|
126 |
+
print(f'Generated an exception: {exc}')
|
127 |
+
|
128 |
+
|
129 |
+
return pdf_files
|
130 |
+
|
131 |
+
except:
|
132 |
+
return []
|
133 |
+
|
134 |
+
def search_github(query):
|
135 |
+
print("Fetching Github Links -----")
|
136 |
+
|
137 |
+
try:
|
138 |
+
# GitHub Search API endpoint
|
139 |
+
url = f"https://api.github.com/search/code?q={query}+extension:md"
|
140 |
+
|
141 |
+
headers = {
|
142 |
+
'Authorization': 'Token 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'
|
143 |
+
}
|
144 |
+
|
145 |
+
# Make the request
|
146 |
+
response = requests.get(url,headers=headers)
|
147 |
+
data = response.json()
|
148 |
+
links = [item['html_url'] for item in data['items']]
|
149 |
+
|
150 |
+
return links
|
151 |
+
|
152 |
+
except:
|
153 |
+
return []
|
154 |
+
|
155 |
+
def search_wikipedia(product):
|
156 |
+
print("Fetching Duckduckgo Links -----")
|
157 |
+
|
158 |
+
api_url = "https://en.wikipedia.org/w/api.php"
|
159 |
+
params = {
|
160 |
+
"action": "opensearch",
|
161 |
+
"search": product,
|
162 |
+
"limit": 5,
|
163 |
+
"namespace": 0,
|
164 |
+
"format": "json"
|
165 |
+
}
|
166 |
+
|
167 |
+
try:
|
168 |
+
response = requests.get(api_url, params=params)
|
169 |
+
response.raise_for_status() # Raise an HTTPError for bad responses (4xx and 5xx)
|
170 |
+
data = response.json()
|
171 |
+
|
172 |
+
if data and len(data) > 3 and len(data[3]) > 0:
|
173 |
+
return data[3] # The URL is in the fourth element of the response array
|
174 |
+
else:
|
175 |
+
return []
|
176 |
+
|
177 |
+
except requests.RequestException as e:
|
178 |
+
print(f"An error occurred: {e}")
|
179 |
+
return []
|
180 |
+
|
181 |
+
# def search_all(product,num):
|
182 |
+
|
183 |
+
# similar_products = extract_similar_products(product)[num]
|
184 |
+
|
185 |
+
# # results = {
|
186 |
+
# # product : [{'duckduckgo': duckduckgo_search(product)},{'google': google_search(product)},{'github': github_search(product)},{'archive': archive_search(product)}]
|
187 |
+
# # }
|
188 |
+
|
189 |
+
# results = {}
|
190 |
+
|
191 |
+
# def search_product(p):
|
192 |
+
# return {
|
193 |
+
# 'product': p,
|
194 |
+
# 'duckduckgo': duckduckgo_search(p),
|
195 |
+
# 'google': google_search(p),
|
196 |
+
# 'github': github_search(p),
|
197 |
+
# 'archive': archive_search(p),
|
198 |
+
# 'wikipedia': wikipedia_search(p)
|
199 |
+
# }
|
200 |
+
|
201 |
+
# with concurrent.futures.ThreadPoolExecutor() as executor:
|
202 |
+
# future_to_product = {executor.submit(search_product, p): p for p in similar_products}
|
203 |
+
|
204 |
+
# for future in concurrent.futures.as_completed(future_to_product):
|
205 |
+
# result = future.result()
|
206 |
+
# product = result['product']
|
207 |
+
# results[product] = [
|
208 |
+
# {'duckduckgo': result['duckduckgo']},
|
209 |
+
# {'google': result['google']},
|
210 |
+
# {'github': result['github']},
|
211 |
+
# {'archive': result['archive']},
|
212 |
+
# {'wikipedia': result['wikipedia']}
|
213 |
+
# ]
|
214 |
+
|
215 |
+
# return results
|
216 |
+
|
217 |
+
# Similarity Check -------------------------------------->
|
218 |
+
|
219 |
+
def extract_similar_products(query):
|
220 |
+
print(f"\nFetching similar items of -----> {query}")
|
221 |
+
results = DDGS().chat(f'{query} Similar Products')
|
222 |
+
|
223 |
+
pattern = r'^\d+\.\s(.+)$'
|
224 |
+
matches = re.findall(pattern, results, re.MULTILINE)
|
225 |
+
matches = [item.split(': ')[0] for item in matches]
|
226 |
+
return matches
|
227 |
+
|