That1BrainCell
commited on
Infringement first commit
Browse files
app.py
ADDED
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import concurrent.futures
|
3 |
+
from functools import partial
|
4 |
+
import numpy as np
|
5 |
+
from io import StringIO
|
6 |
+
import sys
|
7 |
+
import time
|
8 |
+
|
9 |
+
# File Imports
|
10 |
+
from embedding import get_embeddings # Ensure this file/module is available
|
11 |
+
from preprocess import filtering # Ensure this file/module is available
|
12 |
+
from search import *
|
13 |
+
|
14 |
+
# Cosine Similarity Function
|
15 |
+
def cosine_similarity(vec1, vec2):
|
16 |
+
vec1 = np.array(vec1)
|
17 |
+
vec2 = np.array(vec2)
|
18 |
+
|
19 |
+
dot_product = np.dot(vec1, vec2)
|
20 |
+
magnitude_vec1 = np.linalg.norm(vec1)
|
21 |
+
magnitude_vec2 = np.linalg.norm(vec2)
|
22 |
+
|
23 |
+
if magnitude_vec1 == 0 or magnitude_vec2 == 0:
|
24 |
+
return 0.0
|
25 |
+
|
26 |
+
cosine_sim = dot_product / (magnitude_vec1 * magnitude_vec2)
|
27 |
+
return cosine_sim
|
28 |
+
|
29 |
+
# Logger class to capture output
|
30 |
+
class StreamCapture:
|
31 |
+
def __init__(self):
|
32 |
+
self.output = StringIO()
|
33 |
+
self._stdout = sys.stdout
|
34 |
+
|
35 |
+
def __enter__(self):
|
36 |
+
sys.stdout = self.output
|
37 |
+
return self.output
|
38 |
+
|
39 |
+
def __exit__(self, exc_type, exc_val, exc_tb):
|
40 |
+
sys.stdout = self._stdout
|
41 |
+
|
42 |
+
# Main Function
|
43 |
+
def score(main_product, main_url, search, logger, log_area):
|
44 |
+
data = {}
|
45 |
+
|
46 |
+
if search == 'all':
|
47 |
+
similar = extract_similar_products(main_product)[:1]
|
48 |
+
|
49 |
+
with concurrent.futures.ThreadPoolExecutor() as executor:
|
50 |
+
futures = []
|
51 |
+
|
52 |
+
search_functions = [search_google, search_duckduckgo, search_github, search_wikipedia]
|
53 |
+
|
54 |
+
for search_func in search_functions:
|
55 |
+
futures.append(executor.submit(partial(filtering, search_func(similar), main_product, similar)))
|
56 |
+
|
57 |
+
for future in concurrent.futures.as_completed(futures):
|
58 |
+
data[similar] = future.result()
|
59 |
+
|
60 |
+
else:
|
61 |
+
similar = extract_similar_products(main_product)[:1]
|
62 |
+
|
63 |
+
for product in similar:
|
64 |
+
|
65 |
+
if search == 'google':
|
66 |
+
data[product] = filtering(search_google(product), main_product, product)
|
67 |
+
elif search == 'duckduckgo':
|
68 |
+
data[product] = filtering(search_duckduckgo(product), main_product, product)
|
69 |
+
elif search == 'archive':
|
70 |
+
data[product] = filtering(search_archive(product), main_product, product)
|
71 |
+
elif search == 'github':
|
72 |
+
data[product] = filtering(search_github(product), main_product, product)
|
73 |
+
elif search == 'wikipedia':
|
74 |
+
data[product] = filtering(search_wikipedia(product), main_product, product)
|
75 |
+
|
76 |
+
logger.write("\n\nFiltered Links ------------------>\n")
|
77 |
+
logger.write(str(data) + "\n")
|
78 |
+
log_area.text(logger.getvalue())
|
79 |
+
|
80 |
+
logger.write("\n\nCreating Main product Embeddings ---------->\n")
|
81 |
+
main_result, main_embedding = get_embeddings(main_url)
|
82 |
+
log_area.text(logger.getvalue())
|
83 |
+
|
84 |
+
cosine_sim_scores = []
|
85 |
+
|
86 |
+
logger.write("\n\nCreating Similar product Embeddings ---------->\n")
|
87 |
+
log_area.text(logger.getvalue())
|
88 |
+
|
89 |
+
print("main",main_embedding)
|
90 |
+
|
91 |
+
for product in data:
|
92 |
+
for link in data[product][:2]:
|
93 |
+
|
94 |
+
similar_result, similar_embedding = get_embeddings(link)
|
95 |
+
log_area.text(logger.getvalue())
|
96 |
+
|
97 |
+
print(similar_embedding)
|
98 |
+
for i in range(len(main_embedding)):
|
99 |
+
score = cosine_similarity(main_embedding[i], similar_embedding[i])
|
100 |
+
cosine_sim_scores.append((product, link, i, score))
|
101 |
+
log_area.text(logger.getvalue())
|
102 |
+
|
103 |
+
logger.write("--------------- DONE -----------------\n")
|
104 |
+
log_area.text(logger.getvalue())
|
105 |
+
return cosine_sim_scores, main_result
|
106 |
+
|
107 |
+
# Streamlit Interface
|
108 |
+
st.title("Product Infringement Checker")
|
109 |
+
|
110 |
+
# Inputs
|
111 |
+
main_product = st.text_input('Enter Main Product Name', 'Philips led 7w bulb')
|
112 |
+
main_url = st.text_input('Enter Main Product Manual URL', 'https://www.assets.signify.com/is/content/PhilipsConsumer/PDFDownloads/Colombia/technical-sheets/ODLI20180227_001-UPD-es_CO-Ficha_Tecnica_LED_MR16_Master_7W_Dim_12V_CRI90.pdf')
|
113 |
+
search_method = st.selectbox('Choose Search Engine', ['duckduckgo', 'google', 'archive', 'github', 'wikipedia', 'all'])
|
114 |
+
|
115 |
+
if st.button('Check for Infringement'):
|
116 |
+
log_output = st.empty() # Placeholder for log output
|
117 |
+
|
118 |
+
with st.spinner('Processing...'):
|
119 |
+
with StreamCapture() as logger:
|
120 |
+
cosine_sim_scores, main_result = score(main_product, main_url, search_method, logger, log_output)
|
121 |
+
|
122 |
+
st.success('Processing complete!')
|
123 |
+
|
124 |
+
st.subheader("Cosine Similarity Scores")
|
125 |
+
|
126 |
+
# = score(main_product, main_url, search, logger, log_output)
|
127 |
+
tags = ['Introduction', 'Specifications', 'Product Overview', 'Safety Information', 'Installation Instructions', 'Setup and Configuration', 'Operation Instructions', 'Maintenance and Care', 'Troubleshooting', 'Warranty Information', 'Legal Information']
|
128 |
+
|
129 |
+
for product, link, index, value in cosine_sim_scores:
|
130 |
+
if not index:
|
131 |
+
st.write(f"Product: {product}, Link: {link}")
|
132 |
+
st.write(f"{tags[index]:<20} Cosine Similarity Score: {value:.2f}")
|