Spaces:
Running
Running
import streamlit as st | |
from transformers import pipeline | |
from ModelDriver import * | |
import numpy as np | |
# Add a title | |
st.title('GPT Detection Demo') | |
st.write("This is a demo for GPT detection. You can use this demo to test the model. There are 3 variations of the Roberta Classifier Model, The model was trained on CHEAT, GPABenchmark, OpenGPT datasets.You can choose dataset variation of the model on the sidebar.") | |
# st.write("Reference on how we built Roberta Sentinel: https://arxiv.org/abs/2305.07969") | |
# # Add 4 options for 4 models | |
# ModelOption = st.sidebar.selectbox( | |
# 'Which Model do you want to use?', | |
# ('RobertaClassifier'), | |
# ) | |
DatasetOption = st.sidebar.selectbox( | |
'Select Input Text Domain', | |
('General Text', 'Computer Science Abstract', 'Scientific Abstract'), | |
) | |
text = st.text_area('Enter text here (max 512 words)', '', height=200) | |
if st.button('Generate'): | |
# if ModelOption == 'RobertaSentinel': | |
# if DatasetOption == 'OpenGPT': | |
# result = RobertaSentinelOpenGPTInference(text) | |
# st.write("Model: RobertaSentinelOpenGPT") | |
# elif DatasetOption == 'CSAbstract': | |
# result = RobertaSentinelCSAbstractInference(text) | |
# st.write("Model: RobertaSentinelCSAbstract") | |
# if ModelOption == 'RobertaClassifier': | |
# if DatasetOption == 'OpenGPT': | |
# result = RobertaClassifierOpenGPTInference(text) | |
# st.write("Model: RobertaClassifierOpenGPT") | |
# elif DatasetOption == 'GPABenchmark': | |
# result = RobertaClassifierGPABenchmarkInference(text) | |
# st.write("Model: RobertaClassifierGPABenchmark") | |
# elif DatasetOption == 'CHEAT': | |
# result = RobertaClassifierCHEATInference(text) | |
# st.write("Model: RobertaClassifierCHEAT") | |
if DatasetOption == 'General Text': | |
result = RobertaClassifierOpenGPTInference(text) | |
st.write("Model: RobertaClassifierOpenGPT") | |
elif DatasetOption == 'Computer Science Abstract': | |
result = RobertaClassifierGPABenchmarkInference(text) | |
st.write("Model: RobertaClassifierGPABenchmark") | |
elif DatasetOption == 'Scientific Abstract': | |
result = RobertaClassifierCHEATInference(text) | |
st.write("Model: RobertaClassifierCHEAT") | |
Prediction = "Human Written" if not np.argmax(result) else "Machine Generated" | |
st.write(f"Prediction: {Prediction} ") | |
st.write(f"Probabilty:", max(result)) | |