Spaces:
Running
Running
from sklearn.metrics.pairwise import cosine_similarity | |
import numpy as np | |
from sqlalchemy.orm import Session | |
from users.models import UserEmbeddings | |
from core.config import get_settings | |
settings = get_settings() | |
class FaceMatch: | |
def __init__(self, db: Session): | |
self.db = db | |
self.threshold = settings.FACE_RECOGNITION_THRESHOLD | |
def load_embeddings_from_db(self): | |
user_embeddings = self.db.query(UserEmbeddings).all() | |
return {ue.user_id: np.array(ue.embeddings) for ue in user_embeddings} | |
def match_faces(self, new_embeddings, saved_embeddings): | |
new_embeddings = np.array(new_embeddings) | |
max_similarity = 0 | |
identity = None | |
for user_id, stored_embeddings in saved_embeddings.items(): | |
similarity = cosine_similarity(new_embeddings.reshape(1, -1), stored_embeddings.reshape(1, -1))[0][0] | |
if similarity > max_similarity: | |
max_similarity = similarity | |
identity = user_id | |
return identity, max_similarity if max_similarity > self.threshold else (None, 0) | |
def new_face_matching(self, new_embeddings): | |
embeddings_dict = self.load_embeddings_from_db() | |
if not embeddings_dict: | |
return {'status': 'Error', 'message': 'No embeddings available in the database'} | |
identity, similarity = self.match_faces(new_embeddings, embeddings_dict) | |
if identity: | |
return { | |
'status': 'Success', | |
'message': 'Match Found', | |
'user_id': identity, | |
'similarity': float(similarity) # Convert numpy float to Python float | |
} | |
return { | |
'status': 'Error', | |
'message': 'No matching face found' | |
} |