Testing out FastAPI for FaceEmbeddings extraction
Browse files- Dockerfile +10 -0
- main.py +73 -0
- requirements.txt +9 -0
Dockerfile
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.10.12
|
2 |
+
|
3 |
+
COPY . .
|
4 |
+
|
5 |
+
WORKDIR /
|
6 |
+
|
7 |
+
RUN pip install --no-cache-dir --upgrade -r /requirements.txt
|
8 |
+
|
9 |
+
CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "7860"]
|
10 |
+
|
main.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, UploadFile
|
2 |
+
from fastapi.responses import JSONResponse
|
3 |
+
from fastapi.param_functions import File
|
4 |
+
from fastapi.middleware.cors import CORSMiddleware
|
5 |
+
from typing import List
|
6 |
+
import io
|
7 |
+
from facenet_pytorch import MTCNN, InceptionResnetV1
|
8 |
+
import torch
|
9 |
+
import io
|
10 |
+
from PIL import Image
|
11 |
+
|
12 |
+
app = FastAPI()
|
13 |
+
|
14 |
+
app.add_middleware(
|
15 |
+
CORSMiddleware,
|
16 |
+
allow_origins=["*"],
|
17 |
+
allow_credentials=True,
|
18 |
+
allow_methods=["*"],
|
19 |
+
allow_headers=["*"],
|
20 |
+
)
|
21 |
+
|
22 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
23 |
+
|
24 |
+
mtcnn = MTCNN(keep_all=True, device=device)
|
25 |
+
resnet = InceptionResnetV1(pretrained='vggface2').eval().to(device)
|
26 |
+
|
27 |
+
|
28 |
+
@app.get("/", tags=["Home"])
|
29 |
+
def read_root():
|
30 |
+
return {"message": "Welcome to the face embeddings API!"}
|
31 |
+
|
32 |
+
@app.get("/health", tags=["Health"])
|
33 |
+
def health_check():
|
34 |
+
return {"status": "ok"}
|
35 |
+
|
36 |
+
|
37 |
+
|
38 |
+
@app.post("/extract", tags=["Extract Embeddings"])
|
39 |
+
async def extract_embeddings(file: UploadFile = File(...)):
|
40 |
+
# Load the image
|
41 |
+
contents = await file.read()
|
42 |
+
image = Image.open(io.BytesIO(contents)).convert('RGB')
|
43 |
+
|
44 |
+
# Preprocess the image
|
45 |
+
preprocessed_image = mtcnn(image)
|
46 |
+
|
47 |
+
# Extract the face embeddings
|
48 |
+
embeddings = resnet(preprocessed_image.unsqueeze(0)).detach().cpu().numpy().tolist()
|
49 |
+
|
50 |
+
return JSONResponse(content={"embeddings": embeddings})
|
51 |
+
|
52 |
+
|
53 |
+
# @app.post("/extract")
|
54 |
+
# async def extract_embeddings(file: UploadFile = File(...)):
|
55 |
+
# # Load the image
|
56 |
+
# contents = await file.read()
|
57 |
+
# image = face_recognition.load_image_file(io.BytesIO(contents))
|
58 |
+
|
59 |
+
# # Find all the faces in the image
|
60 |
+
# face_locations = face_recognition.face_locations(image)
|
61 |
+
|
62 |
+
# # Initialize an empty list to store the face embeddings
|
63 |
+
# embeddings = []
|
64 |
+
|
65 |
+
# # Loop through each face location
|
66 |
+
# for face_location in face_locations:
|
67 |
+
# # Extract the face encoding
|
68 |
+
# face_encoding = face_recognition.face_encodings(image, [face_location])[0]
|
69 |
+
|
70 |
+
# # Append the face encoding to the embeddings list
|
71 |
+
# embeddings.append(face_encoding.tolist())
|
72 |
+
|
73 |
+
# return JSONResponse(content={"embeddings": embeddings})
|
requirements.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
facenet_pytorch==2.5.2
|
2 |
+
torch==1.8.1
|
3 |
+
torchvision==0.9.1
|
4 |
+
numpy==1.19.5
|
5 |
+
pandas==1.2.4
|
6 |
+
Pillow==8.2.0
|
7 |
+
fastapi
|
8 |
+
uvicorn
|
9 |
+
python-multipart
|