|
from sklearn.metrics.pairwise import cosine_similarity |
|
import numpy as np |
|
from sqlalchemy.orm import Session |
|
from users.models import UserEmbeddings |
|
from core.config import get_settings |
|
|
|
settings = get_settings() |
|
|
|
class FaceMatch: |
|
def __init__(self, db: Session): |
|
self.db = db |
|
self.threshold = settings.FACE_RECOGNITION_THRESHOLD |
|
|
|
def load_embeddings_from_db(self): |
|
user_embeddings = self.db.query(UserEmbeddings).all() |
|
return {ue.user_id: np.array(ue.embeddings) for ue in user_embeddings} |
|
|
|
def match_faces(self, new_embeddings, saved_embeddings): |
|
new_embeddings = np.array(new_embeddings) |
|
max_similarity = 0 |
|
identity = None |
|
|
|
for user_id, stored_embeddings in saved_embeddings.items(): |
|
similarity = cosine_similarity(new_embeddings.reshape(1, -1), stored_embeddings.reshape(1, -1))[0][0] |
|
if similarity > max_similarity: |
|
max_similarity = similarity |
|
identity = user_id |
|
|
|
return identity, max_similarity if max_similarity > self.threshold else (None, 0) |
|
|
|
def new_face_matching(self, new_embeddings): |
|
embeddings_dict = self.load_embeddings_from_db() |
|
if not embeddings_dict: |
|
return {'status': 'Error', 'message': 'No embeddings available in the database'} |
|
|
|
identity, similarity = self.match_faces(new_embeddings, embeddings_dict) |
|
if identity: |
|
return { |
|
'status': 'Success', |
|
'message': 'Match Found', |
|
'user_id': identity, |
|
'similarity': float(similarity) |
|
} |
|
return { |
|
'status': 'Error', |
|
'message': 'No matching face found' |
|
} |