|
import numpy as np |
|
import os |
|
import torch |
|
from facenet_pytorch import MTCNN, InceptionResnetV1 |
|
import logging |
|
from PIL import Image |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
class FacialProcessing: |
|
def __init__(self): |
|
os.environ['TORCH_HOME'] = '/tmp/.cache/torch' |
|
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
|
self.mtcnn = MTCNN(keep_all=True, device=self.device) |
|
self.resnet = InceptionResnetV1(pretrained='vggface2').eval().to(self.device) |
|
|
|
def extract_embeddings_vgg(self, image_path): |
|
try: |
|
img = Image.open(image_path) |
|
img = img.convert('RGB') |
|
|
|
|
|
boxes, _ = self.mtcnn.detect(img) |
|
|
|
if boxes is None: |
|
logger.warning(f"No face detected in image: {image_path}") |
|
return None |
|
|
|
|
|
largest_box = max(boxes, key=lambda box: (box[2] - box[0]) * (box[3] - box[1])) |
|
face = self.mtcnn(img, return_prob=False) |
|
|
|
if face is None: |
|
logger.warning(f"Failed to align face in image: {image_path}") |
|
return None |
|
|
|
|
|
embeddings = self.resnet(face).detach().cpu().numpy().flatten() |
|
return embeddings.tolist() |
|
|
|
except Exception as e: |
|
logger.error(f"An error occurred while extracting embeddings: {e}") |
|
return None |