Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -12,7 +12,7 @@ sentence_model = SentenceTransformer("all-MiniLM-L6-v2")
|
|
12 |
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
13 |
image_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
|
14 |
|
15 |
-
def generate_input(input_type, image=None, text=None):
|
16 |
# Initialize the input variable
|
17 |
combined_input = ""
|
18 |
|
@@ -38,49 +38,61 @@ def generate_input(input_type, image=None, text=None):
|
|
38 |
if not combined_input:
|
39 |
combined_input = "No input provided."
|
40 |
|
41 |
-
return vector_search(combined_input)
|
42 |
|
43 |
# Load embeddings and metadata
|
44 |
embeddings = np.load("netflix_embeddings.npy") #created using sentence_transformers on kaggle
|
45 |
metadata = pd.read_csv("netflix_metadata.csv") #created using sentence_transformers on kaggle
|
46 |
|
47 |
# Vector search function
|
48 |
-
def vector_search(query):
|
49 |
query_embedding = sentence_model.encode(query)
|
50 |
similarities = cosine_similarity([query_embedding], embeddings)[0]
|
51 |
-
top_n = 3
|
52 |
top_indices = similarities.argsort()[-top_n:][::-1]
|
53 |
results = metadata.iloc[top_indices]
|
54 |
-
|
55 |
-
|
56 |
-
|
|
|
|
|
|
|
57 |
return result_text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
with gr.Blocks() as demo:
|
59 |
gr.Markdown("# Netflix Recommendation System")
|
60 |
gr.Markdown("Enter a query to receive Netflix show recommendations based on title, description, and genre.")
|
61 |
|
62 |
input_type = gr.Radio(["Image", "Text", "Both"], label="Select Input Type", type="value")
|
|
|
63 |
image_input = gr.Image(label="Upload Image", type="pil", visible=False) # Hidden initially
|
64 |
text_input = gr.Textbox(label="Enter Text Query", placeholder="Enter a description or query here", visible=False) # Hidden initially
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
elif input_type == "Both":
|
73 |
-
return gr.update(visible=True), gr.update(visible=True)
|
74 |
-
|
75 |
-
input_type.change(fn=update_inputs, inputs=input_type, outputs=[image_input, text_input])
|
76 |
|
77 |
submit_button = gr.Button("Submit")
|
78 |
output = gr.Textbox(label="Recommendations")
|
79 |
|
80 |
-
submit_button.click(fn=generate_input, inputs=[input_type,image_input, text_input], outputs=output)
|
81 |
-
|
82 |
demo.launch()
|
83 |
|
|
|
84 |
# with gr.Blocks() as demo:
|
85 |
# gr.Markdown("# Netflix Recommendation System")
|
86 |
# gr.Markdown("Enter a query to receive Netflix show recommendations based on title, description, and genre.")
|
|
|
12 |
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
13 |
image_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
|
14 |
|
15 |
+
def generate_input(input_type, image=None, text=None, response_amount=3):
|
16 |
# Initialize the input variable
|
17 |
combined_input = ""
|
18 |
|
|
|
38 |
if not combined_input:
|
39 |
combined_input = "No input provided."
|
40 |
|
41 |
+
return vector_search(combined_input,response_amount)
|
42 |
|
43 |
# Load embeddings and metadata
|
44 |
embeddings = np.load("netflix_embeddings.npy") #created using sentence_transformers on kaggle
|
45 |
metadata = pd.read_csv("netflix_metadata.csv") #created using sentence_transformers on kaggle
|
46 |
|
47 |
# Vector search function
|
48 |
+
def vector_search(query,top_n=3):
|
49 |
query_embedding = sentence_model.encode(query)
|
50 |
similarities = cosine_similarity([query_embedding], embeddings)[0]
|
|
|
51 |
top_indices = similarities.argsort()[-top_n:][::-1]
|
52 |
results = metadata.iloc[top_indices]
|
53 |
+
result_text=""
|
54 |
+
for index,row in results.iterrows():
|
55 |
+
if index!=top_n-1:
|
56 |
+
result_text+=f"Title: {row['title']} Description: {row['description']} Genre: {row['listed_in']}\n\n"
|
57 |
+
else:
|
58 |
+
result_text+=f"Title: {row['title']} Description: {row['description']} Genre: {row['listed_in']}"
|
59 |
return result_text
|
60 |
+
|
61 |
+
|
62 |
+
def set_response_amount(response_amount):
|
63 |
+
return response_amount
|
64 |
+
|
65 |
+
# Based on the selected input type, make the appropriate input visible
|
66 |
+
def update_inputs(input_type):
|
67 |
+
if input_type == "Image":
|
68 |
+
return gr.update(visible=True), gr.update(visible=False), gr.update(visible=True)
|
69 |
+
elif input_type == "Text":
|
70 |
+
return gr.update(visible=False), gr.update(visible=True), gr.update(visible=True)
|
71 |
+
elif input_type == "Both":
|
72 |
+
return gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)
|
73 |
with gr.Blocks() as demo:
|
74 |
gr.Markdown("# Netflix Recommendation System")
|
75 |
gr.Markdown("Enter a query to receive Netflix show recommendations based on title, description, and genre.")
|
76 |
|
77 |
input_type = gr.Radio(["Image", "Text", "Both"], label="Select Input Type", type="value")
|
78 |
+
response_type=gr.Dropdown(choices=[3,5,10,25], type="value", label="Select Response Amount", visible=False)
|
79 |
image_input = gr.Image(label="Upload Image", type="pil", visible=False) # Hidden initially
|
80 |
text_input = gr.Textbox(label="Enter Text Query", placeholder="Enter a description or query here", visible=False) # Hidden initially
|
81 |
+
|
82 |
+
input_type.change(fn=update_inputs, inputs=input_type, outputs=[image_input, text_input, response_type])
|
83 |
+
# State variable to store the selected response amount
|
84 |
+
selected_response_amount = gr.State()
|
85 |
+
|
86 |
+
# Capture response amount immediately when dropdown changes
|
87 |
+
response_type.change(fn=set_response_amount, inputs=response_type, outputs=selected_response_amount)
|
|
|
|
|
|
|
|
|
88 |
|
89 |
submit_button = gr.Button("Submit")
|
90 |
output = gr.Textbox(label="Recommendations")
|
91 |
|
92 |
+
submit_button.click(fn=generate_input, inputs=[input_type,image_input, text_input,selected_response_amount], outputs=output)
|
|
|
93 |
demo.launch()
|
94 |
|
95 |
+
|
96 |
# with gr.Blocks() as demo:
|
97 |
# gr.Markdown("# Netflix Recommendation System")
|
98 |
# gr.Markdown("Enter a query to receive Netflix show recommendations based on title, description, and genre.")
|