PDFNet / app.py
Tennineee's picture
Update app.py
13faf3b verified
raw
history blame
4.53 kB
import gradio as gr
import cv2
import matplotlib
import numpy as np
import os
from PIL import Image
import spaces
import torch
import tempfile
from gradio_imageslider import ImageSlider
from huggingface_hub import hf_hub_download
from models.PDFNet import build_model
import torch
import cv2
import matplotlib.pyplot as plt
import numpy as np
from tqdm import tqdm
import argparse
from args import get_args_parser
from torchvision.transforms.functional import normalize
import huggingface_hub
from DAM_V2.depth_anything_v2.dpt import DepthAnythingV2
css = """
#img-display-container {
max-height: 100vh;
}
#img-display-input {
max-height: 80vh;
}
#img-display-output {
max-height: 80vh;
}
#download {
height: 62px;
}
"""
# device = 'cuda' if torch.cuda.is_available() else 'cpu'
device = torch.device('cpu')
parser = argparse.ArgumentParser('PDFNet Testing script', parents=[get_args_parser()])
args = parser.parse_args(args=[])
model,model_name = build_model(args)
model_path = hf_hub_download(repo_id="Tennineee/PDFNet",filename="PDFNet_Best.pth", repo_type="model")
model.load_state_dict(torch.load(model_path,map_location='cpu'),strict=False)
model = model.to(device).eval()
DAMV2_configs = {
'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]},
'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768]},
'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]},
}
encoder = 'vitb' # or 'vits', 'vitb', 'vitl'
encoder2name = {
'vits': 'Small',
'vitb': 'Base',
'vitl': 'Large',
'vitg': 'Giant', # we are undergoing company review procedures to release our giant model checkpoint
}
model_name = encoder2name[encoder]
DAMV2 = DepthAnythingV2(**DAMV2_configs[encoder])
filepath = hf_hub_download(repo_id=f"depth-anything/Depth-Anything-V2-{model_name}", filename=f"depth_anything_v2_{encoder}.pth", repo_type="model")
state_dict = torch.load(filepath, map_location="cpu")
DAMV2.load_state_dict(state_dict)
DAMV2 = DAMV2.to(device).eval()
title = "# PDFNet"
description = """Official demo for **PDFNet**, here use DAMV2-base to generate depth map.
Please refer to our [paper](https://arxiv.org/abs/2503.06100) and [github](https://github.com/Tennine2077/PDFNet) for more details."""
class GOSNormalize(object):
def __init__(self, mean=[0.485,0.456,0.406], std=[0.229,0.224,0.225]):
self.mean = mean
self.std = std
def __call__(self,image):
image = normalize(image,self.mean,self.std)
return image
transforms = GOSNormalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
def predict(image):
H,W = image.shape[:2]
depth = DAMV2.infer_image(image)
image = torch.nn.functional.interpolate(torch.from_numpy(image).permute(2,0,1)[None,...],size=[1024,1024],mode='bilinear',align_corners=True)[0]
depth = torch.nn.functional.interpolate(torch.from_numpy(depth)[None,None,...],size=[1024,1024],mode='bilinear',align_corners=True)
image = torch.divide(image,255.0)
depth = torch.divide(depth,255.0)
image = transforms(image).unsqueeze(0)
DIS_map = model.inference(image.to(device),depth.to(device))[0][0][0].cpu()
DIS_map = cv2.resize(np.array(DIS_map), (W,H))
return DIS_map
with gr.Blocks(css=css) as demo:
gr.Markdown(title)
gr.Markdown(description)
gr.Markdown("### Dichotomous Image Segmentation demo")
with gr.Row():
input_image = gr.Image(label="Input Image", type='numpy', elem_id='img-display-input')
dis_image_slider = gr.Image(label="Pedict View",type='numpy', elem_id='img-display-output')
# dis_image_slider = ImageSlider(label="Pedict View", type="pil", elem_id='img-display-output')
submit = gr.Button(value="Compute")
def on_submit(image):
original_image = image.copy()
DIS_map = predict(np.array(image))
DIS_map = (DIS_map - DIS_map.min()) / (DIS_map.max() - DIS_map.min()) * 255.0
matting = (DIS_map[...,None] / 255.0 * original_image) + (255-matting[...,None])
return matting.astype('uint8')
submit.click(on_submit, inputs=[input_image], outputs=dis_image_slider)
example_files = os.listdir('assets/examples')
example_files.sort()
example_files = [os.path.join('assets/examples', filename) for filename in example_files]
examples = gr.Examples(examples=example_files, inputs=[input_image], outputs=dis_image_slider, fn=on_submit)
if __name__ == '__main__':
demo.queue().launch(share=True)