Spaces:
Runtime error
Runtime error
""" | |
Copyright (c) 2022, salesforce.com, inc. | |
All rights reserved. | |
SPDX-License-Identifier: BSD-3-Clause | |
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause | |
""" | |
import time | |
import random | |
import torch | |
# from lavis.datasets.data_utils import move_to_cuda | |
from torch.utils.data import DataLoader | |
class MultiIterLoader: | |
""" | |
A simple wrapper for iterating over multiple iterators. | |
Args: | |
loaders (List[Loader]): List of Iterator loaders. | |
ratios (List[float]): List of ratios to sample from each loader. If None, all loaders are sampled uniformly. | |
""" | |
def __init__(self, loaders, ratios=None): | |
# assert all loaders has __next__ method | |
for loader in loaders: | |
assert hasattr(loader, "__next__"), "Loader {} has no __next__ method.".format(loader) | |
if ratios is None: | |
ratios = [1.0] * len(loaders) | |
else: | |
assert len(ratios) == len(loaders) | |
ratios = [float(ratio) / sum(ratios) for ratio in ratios] | |
self.loaders = loaders | |
self.ratios = ratios | |
def __next__(self): | |
# random sample from each loader by ratio | |
loader_idx = random.choices(range(len(self.loaders)), self.ratios, k=1)[0] | |
return next(self.loaders[loader_idx]) | |
def __iter__(self): | |
return self | |
class PrefetchLoader(object): | |
""" | |
Modified from https://github.com/ChenRocks/UNITER. | |
overlap compute and cuda data transfer | |
(copied and then modified from nvidia apex) | |
""" | |
def __init__(self, loader): | |
self.loader = loader | |
self.stream = torch.cuda.Stream() | |
def __iter__(self): | |
loader_it = iter(self.loader) | |
self.preload(loader_it) | |
batch = self.next(loader_it) | |
while batch is not None: | |
is_tuple = isinstance(batch, tuple) | |
if is_tuple: | |
task, batch = batch | |
if is_tuple: | |
yield task, batch | |
else: | |
yield batch | |
batch = self.next(loader_it) | |
def __len__(self): | |
return len(self.loader) | |
def preload(self, it): | |
try: | |
self.batch = next(it) | |
except StopIteration: | |
self.batch = None | |
return | |
# if record_stream() doesn't work, another option is to make sure | |
# device inputs are created on the main stream. | |
# self.next_input_gpu = torch.empty_like(self.next_input, | |
# device='cuda') | |
# self.next_target_gpu = torch.empty_like(self.next_target, | |
# device='cuda') | |
# Need to make sure the memory allocated for next_* is not still in use | |
# by the main stream at the time we start copying to next_*: | |
# self.stream.wait_stream(torch.cuda.current_stream()) | |
# with torch.cuda.stream(self.stream): | |
# self.batch = move_to_cuda(self.batch) | |
# more code for the alternative if record_stream() doesn't work: | |
# copy_ will record the use of the pinned source tensor in this | |
# side stream. | |
# self.next_input_gpu.copy_(self.next_input, non_blocking=True) | |
# self.next_target_gpu.copy_(self.next_target, non_blocking=True) | |
# self.next_input = self.next_input_gpu | |
# self.next_target = self.next_target_gpu | |
def next(self, it): | |
torch.cuda.current_stream().wait_stream(self.stream) | |
batch = self.batch | |
if batch is not None: | |
record_cuda_stream(batch) | |
self.preload(it) | |
return batch | |
def __getattr__(self, name): | |
method = self.loader.__getattribute__(name) | |
return method | |
def record_cuda_stream(batch): | |
if isinstance(batch, torch.Tensor): | |
batch.record_stream(torch.cuda.current_stream()) | |
elif isinstance(batch, list) or isinstance(batch, tuple): | |
for t in batch: | |
record_cuda_stream(t) | |
elif isinstance(batch, dict): | |
for t in batch.values(): | |
record_cuda_stream(t) | |
else: | |
pass | |
class IterLoader: | |
""" | |
A wrapper to convert DataLoader as an infinite iterator. | |
Modified from: | |
https://github.com/open-mmlab/mmcv/blob/master/mmcv/runner/iter_based_runner.py | |
""" | |
def __init__(self, dataloader: DataLoader, use_distributed: bool = False): | |
self._dataloader = dataloader | |
self.iter_loader = iter(self._dataloader) | |
self._use_distributed = use_distributed | |
self._epoch = 0 | |
def epoch(self) -> int: | |
return self._epoch | |
def __next__(self): | |
try: | |
data = next(self.iter_loader) | |
except StopIteration: | |
self._epoch += 1 | |
if hasattr(self._dataloader.sampler, "set_epoch") and self._use_distributed: | |
self._dataloader.sampler.set_epoch(self._epoch) | |
time.sleep(2) # Prevent possible deadlock during epoch transition | |
self.iter_loader = iter(self._dataloader) | |
data = next(self.iter_loader) | |
return data | |
def __iter__(self): | |
return self | |
def __len__(self): | |
return len(self._dataloader) | |