SEED-Story / src /train /train_sdxl_img2img_llm.py
xinlai's picture
seedx
674d663
raw
history blame
20.9 kB
# flake8: noqa
import hydra
import pyrootutils
import os
import torch
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import ProjectConfiguration
from tqdm.auto import tqdm
from omegaconf import OmegaConf
from omegaconf.dictconfig import DictConfig
from diffusers import AutoencoderKL, DDPMScheduler, UNet2DConditionModel, DPMSolverMultistepScheduler, \
Transformer2DModel
from transformers import CLIPTextModel, CLIPTokenizer
import argparse
from flask import Flask, request
from typing import List, Union
import json
from typing import Optional
import transformers
from dataclasses import dataclass, field, asdict, is_dataclass
from torchdata.dataloader2 import DataLoader2, MultiProcessingReadingService, DistributedReadingService, \
SequentialReadingService
import logging
pyrootutils.setup_root(__file__, indicator='.project-root', pythonpath=True)
from src.train.schedular import get_scheduler
from src.train.dist_utils import all_gather
# logger = get_logger(__name__, log_level='info')
log_format = '%(asctime)s - %(name)s - %(levelname)s - %(message)s'
logging.basicConfig(level=logging.INFO, format=log_format)
logger = logging.getLogger(__name__)
# os.environ["WANDB_MODE"] = "offline"
@dataclass
class ConfigPathArguments:
image_transform: Optional[str] = field(default=None, metadata={"help": "config path of image transform"})
sd_image_transform: Optional[str] = field(default=None,
metadata={"help": "config path of stable diffusion image transform"})
# tokenizer: Optional[str] = field(default=None, metadata={"help": "config path of tokenizer used to initialize tokenizer"})
visual_encoder: Optional[str] = field(default=None, metadata={"help": "config path of visual encoder"})
# text_encoder: Optional[str] = field(default=None, metadata={"help": "config path of visual encoder"})
discrete_model: Optional[str] = field(default=None, metadata={"help": "config path of discrete model"})
# noise_scheduler: Optional[str] = field(default=None, metadata={"help": "config path of noise scheduler"})
# vae: Optional[str] = field(default=None, metadata={"help": "config path of vae"})
adapter: Optional[str] = field(default=None, metadata={"help": "config path of adapter"})
train_dataset: Optional[str] = field(default=None, metadata={"help": "config path of training dataset"})
fsdp_plugin: Optional[str] = field(default=None, metadata={"help": "config path of fsdp plugin"})
deepspeed_plugin: Optional[str] = field(default=None, metadata={"help": "config path of deepspeed plugin"})
tokenizer: Optional[str] = field(default=None,
metadata={"help": "config path of tokenizer used to initialize tokenizer"})
llm_model: Optional[str] = field(default=None, metadata={"help": "config path of llm"})
agent_model: Optional[str] = field(default=None, metadata={"help": "config path of agent"})
@dataclass
class TrainingArguments:
output_dir: str = field(
metadata={"help": "The output directory where the model predictions and checkpoints will be written."}, )
diffusion_model_path: Optional[str] = field(default=None, metadata={"help": "config path of training dataset"})
resume_from_checkpoint: Optional[str] = field(
default=None, metadata={"help": "The path to a folder with a valid checkpoint for your model."})
resume_steps: Optional[int] = field(default=None, metadata={"help": "The training sterps of saved checkpoint"})
learning_rate: float = field(default=5e-5, metadata={"help": "The initial learning rate for AdamW."})
weight_decay: float = field(default=0.0, metadata={"help": "Weight decay for AdamW if we apply some."})
# adam_beta1: float = field(default=0.9, metadata={"help": "Beta1 for AdamW optimizer"})
# adam_beta2: float = field(default=0.999, metadata={"help": "Beta2 for AdamW optimizer"})
# adam_epsilon: float = field(default=1e-8, metadata={"help": "Epsilon for AdamW optimizer."})
max_grad_norm: float = field(default=1.0, metadata={"help": "Max gradient norm."})
gradient_accumulation_steps: int = field(
default=1, metadata={"help": "Number of updates steps to accumulate before performing a backward/update pass."})
mixed_precision: Optional[str] = field(
default='no',
metadata={
"help":
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=1.10.and an Nvidia Ampere GPU."
})
num_train_epochs: int = field(default=3, metadata={"help": "Total number of training epochs to perform."})
max_steps: int = field(default=-1, metadata={"help": "Total number of training steps to perform. "})
save_steps: int = field(default=10000, metadata={"help": "Number of updates steps before two checkpoint saves."})
lr_scheduler_type: str = field(default="cosine", metadata={"help": "The scheduler type to use."})
warmup_steps: int = field(default=0, metadata={"help": "Linear warmup over warmup_steps."})
min_lr_ratio: float = field(default=0.01, metadata={"help": "Minimal learning rate ratio."})
dataloader_num_workers: int = field(default=8, metadata={"help": "The number of workers to use for data loading."})
project_name: str = field(default="IPAdapter", metadata={"help": "The name of experiment"})
expr_name: str = field(default="", metadata={"help": "The name of experiment"})
def build_dataloader(dataset_cfg, image_transform, sd_image_transform, tokenizer, dataloader_num_workers=4):
dataset = hydra.utils.instantiate(dataset_cfg,
image_transform=image_transform,
sd_image_transform=sd_image_transform,
tokenizer=tokenizer)
mp_service = MultiProcessingReadingService(num_workers=dataloader_num_workers)
dist_service = DistributedReadingService()
reading_service = SequentialReadingService(dist_service, mp_service)
dataloader = DataLoader2(dataset, reading_service=reading_service)
return dataloader
def get_metric(output):
metric = {}
for key, value in output.items():
if 'loss' in key:
metric[key] = value.item()
return metric
def merge_config(**kwargs):
config = {}
for key, value in kwargs.items():
if isinstance(value, argparse.Namespace):
config[key] = vars(value)
elif isinstance(value, DictConfig):
config[key] = OmegaConf.to_object(value)
elif is_dataclass(value):
config[key] = asdict(value)
elif isinstance(value, dict):
config[key] = value
else:
logger.error(f'key: {key}, value: {value} will not be merged.')
return config
def trainable_params(model):
count = 0
for name, param in model.named_parameters():
if param.requires_grad:
count += param.numel()
return count
def train():
parser = transformers.HfArgumentParser((ConfigPathArguments, TrainingArguments))
cfg_path, args = parser.parse_args_into_dataclasses()
project_config = ProjectConfiguration(project_dir=args.output_dir,
logging_dir=os.path.join(args.output_dir, 'logs'))
assert int(cfg_path.fsdp_plugin is not None) + int(cfg_path.deepspeed_plugin is not None) <= 1
if cfg_path.fsdp_plugin is not None:
fsdp_plugin_cfg = OmegaConf.load(cfg_path.fsdp_plugin)
fsdp_plugin = hydra.utils.instantiate(fsdp_plugin_cfg)
logger.info('Use FSDP plugin')
else:
fsdp_plugin = None
if cfg_path.deepspeed_plugin is not None:
deepspeed_plugin_cfg = OmegaConf.load(cfg_path.deepspeed_plugin)
deepspeed_plugin = hydra.utils.instantiate(deepspeed_plugin_cfg)
logger.info('Use deepspeed plugin')
else:
deepspeed_plugin = None
accelerator = Accelerator(
mixed_precision=args.mixed_precision,
log_with=['tensorboard', 'wandb'],
project_config=project_config,
gradient_accumulation_steps=args.gradient_accumulation_steps,
step_scheduler_with_optimizer=False,
fsdp_plugin=fsdp_plugin,
deepspeed_plugin=deepspeed_plugin,
)
logger.info('Init accelerator done.')
if cfg_path.deepspeed_plugin is not None:
accelerator.state.deepspeed_plugin.deepspeed_config['train_micro_batch_size_per_gpu'] = 100
os.makedirs(args.output_dir, exist_ok=True)
image_transform_cfg = OmegaConf.load(cfg_path.image_transform)
image_transform = hydra.utils.instantiate(image_transform_cfg)
sd_image_transform_cfg = OmegaConf.load(cfg_path.sd_image_transform)
sd_image_transform = hydra.utils.instantiate(sd_image_transform_cfg)
tokenizer_cfg = OmegaConf.load(cfg_path.tokenizer)
tokenizer = hydra.utils.instantiate(tokenizer_cfg)
visual_encoder_cfg = OmegaConf.load(cfg_path.visual_encoder)
visual_encoder = hydra.utils.instantiate(visual_encoder_cfg)
logger.info('Load visual encoder done.')
discrete_model_cfg = OmegaConf.load(cfg_path.discrete_model)
discrete_model = hydra.utils.instantiate(discrete_model_cfg)
logger.info('Load discrete model done.')
# noise_scheduler_cfg = OmegaConf.load(cfg_path.noise_scheduler)
# noise_scheduler = hydra.utils.instantiate(noise_scheduler_cfg)
# if cfg_path.tokenizer is not None:
# tokenizer_cfg = OmegaConf.load(cfg_path.tokenizer)
# tokenizer = hydra.utils.instantiate(tokenizer_cfg)
# else:
# tokenizer_cfg = None
# tokenizer = None
# if cfg_path.text_encoder is not None:
# text_encoder_cfg = OmegaConf.load(cfg_path.text_encoder)
# text_encoder = hydra.utils.instantiate(text_encoder_cfg)
# logger.info('Load text encoder done.')
# else:
# text_encoder_cfg = None
# text_encoder = None
# vae_cfg = OmegaConf.load(cfg_path.vae)
# vae = hydra.utils.instantiate(vae_cfg)
# logger.info('Load vae done.')
# noise_scheduler = DDPMScheduler.from_pretrained(args.diffusion_model_path, subfolder="scheduler")
# tokenizer = CLIPTokenizer.from_pretrained(args.diffusion_model_path, subfolder="tokenizer")
# text_encoder = CLIPTextModel.from_pretrained(args.diffusion_model_path, subfolder="text_encoder")
# vae = AutoencoderKL.from_pretrained(args.diffusion_model_path, subfolder="vae")
# unet = UNet2DConditionModel.from_pretrained(args.diffusion_model_path, subfolder="unet")
# print('load diffusion model done')
# noise_scheduler = DPMSolverMultistepScheduler.from_pretrained(args.diffusion_model_path, subfolder="scheduler")
noise_scheduler = DDPMScheduler.from_pretrained(args.diffusion_model_path, subfolder="scheduler")
text_encoder = None
vae = AutoencoderKL.from_pretrained(args.diffusion_model_path, subfolder="vae")
unet = UNet2DConditionModel.from_pretrained(args.diffusion_model_path, subfolder="unet")
unet.enable_xformers_memory_efficient_attention()
unet.enable_gradient_checkpointing()
vae.requires_grad_(False)
visual_encoder.requires_grad_(False)
discrete_model.requires_grad_(False)
adapter_cfg = OmegaConf.load(cfg_path.adapter)
adapter = hydra.utils.instantiate(adapter_cfg, unet=unet)
logger.info('Load adapter done.')
weight_dtype = torch.float32
if accelerator.mixed_precision == "fp16":
weight_dtype = torch.float16
elif accelerator.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
vae.to(accelerator.device, dtype=weight_dtype)
visual_encoder.to(accelerator.device, dtype=weight_dtype)
discrete_model.to(accelerator.device, dtype=weight_dtype)
if text_encoder is not None:
text_encoder.to(accelerator.device, dtype=weight_dtype)
train_dataset_cfg = OmegaConf.load(cfg_path.train_dataset)
train_dataloader = build_dataloader(dataset_cfg=train_dataset_cfg,
image_transform=image_transform,
sd_image_transform=sd_image_transform,
tokenizer=tokenizer,
dataloader_num_workers=args.dataloader_num_workers)
llm_model_cfg = OmegaConf.load(cfg_path.llm_model)
llm_model = hydra.utils.instantiate(llm_model_cfg)
llm_model.gradient_checkpointing_enable()
llm_model.config.use_cache = False
logger.info('Load llm model done.')
agent_model_cfg = OmegaConf.load(cfg_path.agent_model)
agent_model = hydra.utils.instantiate(agent_model_cfg, llm=llm_model).to(accelerator.device, dtype=weight_dtype)
agent_model.requires_grad_(False)
agent_model.llm.base_model.model.use_kv_cache_head = False
logger.info('Load agent model done.')
if cfg_path.fsdp_plugin is not None:
adapter = accelerator.prepare(adapter)
optimizer = torch.optim.AdamW(adapter.params_to_opt(), lr=args.learning_rate, weight_decay=args.weight_decay)
logger.info('Init optimizer done.')
scheduler = get_scheduler(name=args.lr_scheduler_type,
optimizer=optimizer,
num_warmup_steps=args.warmup_steps,
num_training_steps=args.max_steps,
min_lr_ratio=args.min_lr_ratio)
# accelerator.register_for_checkpointing(scheduler)
# adapter.adapter, adapter.resampler, optimizer, scheduler = accelerator.prepare(
# adapter.adapter,
# adapter.resampler,
# optimizer,
# scheduler,
# )
# adapter, optimizer, scheduler = accelerator.prepare(
# adapter,
# optimizer,
# scheduler,
# )
if cfg_path.fsdp_plugin is not None:
optimizer, scheduler = accelerator.prepare(optimizer, scheduler)
else:
adapter, optimizer, scheduler = accelerator.prepare(adapter, optimizer, scheduler)
logger.info('Prepare accelerator done.')
# config_record = merge_config(discrete_model=discrete_model_cfg,
# visual_encoder=visual_encoder_cfg,
# text_encoder=text_encoder_cfg,
# image_transform=image_transform_cfg,
# sd_image_transform=sd_image_transform_cfg,
# tokenizer=tokenizer_cfg,
# train_dataset=train_dataset_cfg,
# vae=vae_cfg,
# adapter=adapter_cfg,
# train_args=args)
config_record = merge_config(discrete_model=discrete_model_cfg,
visual_encoder=visual_encoder_cfg,
image_transform=image_transform_cfg,
sd_image_transform=sd_image_transform_cfg,
train_dataset=train_dataset_cfg,
adapter=adapter_cfg,
train_args=args,
agent_model=agent_model_cfg,
llm_model=llm_model,
tokenizer=tokenizer_cfg)
accelerator.init_trackers(project_name=args.project_name,
init_kwargs={"wandb": {
"config": config_record,
"name": args.expr_name,
"dir": args.output_dir
}})
if args.resume_from_checkpoint is not None:
logger.info(f'Load checkpoint from {args.resume_from_checkpoint}')
accelerator.load_state(args.resume_from_checkpoint)
num_params = trainable_params(adapter)
logger.info("***** Running training *****")
logger.info(f" Total optimization steps = {args.max_steps}")
logger.info(f" Total trainable params = {num_params}")
for name, param in adapter.named_parameters():
if param.requires_grad:
print(name)
# print(f'adapter: {trainable_params(adapter.adapter)}')
# print(f'resampler: {trainable_params(adapter.resampler)}')
# Only show the progress bar once on each machine.
progress_bar = tqdm(range(args.max_steps), disable=not accelerator.is_main_process)
progress_bar.set_description("Steps")
global_step = 0
if args.resume_steps is not None:
global_step = args.resume_steps
progress_bar.update(args.resume_steps)
for epoch in range(args.num_train_epochs):
logger.info('Start new epoch')
for step, batch in enumerate(train_dataloader):
with accelerator.accumulate(adapter):
with torch.no_grad():
image_embeds = visual_encoder(batch['images'].to(accelerator.device, dtype=weight_dtype))
image_embeds = discrete_model.encode_image_embeds(image_embeds)
if text_encoder is not None:
text_embeds = text_encoder(batch['text_input_ids'].to(accelerator.device))[0]
else:
text_embeds = None
latents = vae.encode(
batch["sd_images"].to(accelerator.device, dtype=weight_dtype)).latent_dist.sample()
latents = latents * vae.config.scaling_factor
llm_output = agent_model(input_ids=batch['input_ids'].to(accelerator.device),
attention_mask=batch['attention_mask'].to(accelerator.device),
labels=batch['labels'].to(accelerator.device),
image_embeds=image_embeds,
embeds_gen_mask=batch['embeds_gen_mask'].to(accelerator.device)
if batch['embeds_gen_mask'] is not None else None,
embeds_cmp_mask=batch['embeds_cmp_mask'].to(accelerator.device)
if batch['embeds_cmp_mask'] is not None else None,
ids_gen_mask=batch['ids_gen_mask'].to(accelerator.device),
ids_cmp_mask=batch['ids_cmp_mask'].to(accelerator.device),
return_recon_image_embeds=True)
time_ids = batch['time_ids'].to(accelerator.device)
# Sample noise that we'll add to the latents
noise = torch.randn_like(latents)
bsz = latents.shape[0]
# Sample a random timestep for each image
timesteps = torch.randint(0, noise_scheduler.num_train_timesteps, (bsz,), device=latents.device)
timesteps = timesteps.long()
# Add noise to the latents according to the noise magnitude at each timestep
# (this is the forward diffusion process)
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
output = adapter(noisy_latents=noisy_latents,
timesteps=timesteps,
image_embeds=llm_output['recon_image_embeds'],
text_embeds=None,
noise=noise,
time_ids=time_ids)
loss = output['total_loss']
accelerator.backward(loss)
if accelerator.sync_gradients:
accelerator.clip_grad_norm_(adapter.parameters(), max_norm=args.max_grad_norm)
optimizer.step()
scheduler.step()
optimizer.zero_grad()
if accelerator.sync_gradients:
progress_bar.update(1)
global_step += 1
if global_step % args.save_steps == 0:
save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}")
accelerator.save_state(save_path)
metric = get_metric(output)
metric['lr'] = optimizer.param_groups[0]['lr']
accelerator.log(metric, step=global_step)
metric = {key: (format(value, ".6f") if isinstance(value, float) else value) for key, value in
metric.items()}
# if accelerator.is_local_main_process:
if accelerator.is_main_process:
tqdm.write(str(metric))
# print(metric)
if global_step >= args.max_steps:
break
accelerator.end_training()
if __name__ == '__main__':
train()