File size: 12,016 Bytes
674d663
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
import hydra
from omegaconf import OmegaConf
import torch
import os
import re
import pyrootutils
from PIL import Image, ImageDraw, ImageFont
import json
from diffusers import AutoencoderKL, DDPMScheduler, UNet2DConditionModel, EulerDiscreteScheduler
import matplotlib.pyplot as plt
import numpy as np
from collections import Counter
import time

pyrootutils.setup_root(__file__, indicator='.project-root', pythonpath=True)

BOI_TOKEN = '<img>'
EOI_TOKEN = '</img>'
IMG_TOKEN = '<img_{:05d}>'

device = 'cuda:0'
dtype = torch.float16
dtype_str = 'fp16'
num_img_in_tokens = 64
num_img_out_tokens = 64
instruction_prompt = '{instruction}'

tokenizer_cfg_path = 'configs/tokenizer/clm_llama_tokenizer.yaml'
image_transform_cfg_path = 'configs/processer/qwen_448_transform.yaml'
visual_encoder_cfg_path = 'configs/visual_tokenizer/qwen_vitg_448.yaml'

llm_cfg_path = 'configs/clm_models/llama2chat7b_lora.yaml'
agent_cfg_path = 'configs/clm_models/agent_7b_sft.yaml'

adapter_cfg_path = 'configs/detokenizer/detokenizer_sdxl_qwen_vit_adapted.yaml'
discrete_model_cfg_path = 'configs/discrete_model/discrete_identity.yaml'

diffusion_model_path = 'pretrained/stable-diffusion-xl-base-1.0'

save_dir = "output"

cache_mode = 'img_head_tail'
# init
tokenizer_cfg = OmegaConf.load(tokenizer_cfg_path)
tokenizer = hydra.utils.instantiate(tokenizer_cfg)

image_transform_cfg = OmegaConf.load(image_transform_cfg_path)
image_transform = hydra.utils.instantiate(image_transform_cfg)

visual_encoder_cfg = OmegaConf.load(visual_encoder_cfg_path)
visual_encoder = hydra.utils.instantiate(visual_encoder_cfg)
visual_encoder.eval().to(device, dtype=dtype)
print('Init visual encoder done')

llm_cfg = OmegaConf.load(llm_cfg_path)
llm = hydra.utils.instantiate(llm_cfg, torch_dtype=dtype_str)
print('Init llm done.')

agent_model_cfg = OmegaConf.load(agent_cfg_path)
agent_model = hydra.utils.instantiate(agent_model_cfg, llm=llm)

agent_model.eval().to(device, dtype=dtype)
print('Init agent model Done')

noise_scheduler = EulerDiscreteScheduler.from_pretrained(diffusion_model_path, subfolder="scheduler")
print('init vae')
vae = AutoencoderKL.from_pretrained(diffusion_model_path, subfolder="vae").to(device, dtype=dtype)
print('init unet')
unet = UNet2DConditionModel.from_pretrained(diffusion_model_path, subfolder="unet").to(device, dtype=dtype)

adapter_cfg = OmegaConf.load(adapter_cfg_path)
adapter = hydra.utils.instantiate(adapter_cfg, unet=unet).to(device, dtype=dtype).eval()
print('Init adapter done')

discrete_model_cfg = OmegaConf.load(discrete_model_cfg_path)
discrete_model = hydra.utils.instantiate(discrete_model_cfg).to(device).eval()
print('Init discrete model done')

adapter.init_pipe(vae=vae,
                  scheduler=noise_scheduler,
                  visual_encoder=visual_encoder,
                  image_transform=image_transform,
                  discrete_model=discrete_model,
                  dtype=dtype,
                  device=device)

print('Init adapter pipe done')
boi_token_id = tokenizer.encode(BOI_TOKEN, add_special_tokens=False)[0]
eoi_token_id = tokenizer.encode(EOI_TOKEN, add_special_tokens=False)[0]


def read_jsonl_to_dict(filename):
    data = []
    with open(filename, 'r') as file:
        for line in file:
            # Each line is a valid JSON object
            json_object = json.loads(line)
            data.append(json_object)
    return data


# data
filename = 'data/json/val.jsonl'
image_root = 'data/image/george_full'
data = read_jsonl_to_dict(filename)
image_paths = [
    os.path.join(image_root, d['images'][0]) for d in data
]
starting_texts = [
    d['captions'][0] for d in data
]

texts = [
    d['captions'][1:] for d in data
]

def add_subtitle(original_image, text):
    # Calculate the size of the new image
    text_height = 80  # Height of the black bar for the text
    new_image_size = (original_image.width, original_image.height + text_height)

    # Create a new image with a black background
    new_image = Image.new("RGB", new_image_size, "black")
    # Paste the original image onto the new image
    new_image.paste(original_image, (0, 0))

    # Prepare the new image for drawing
    draw = ImageDraw.Draw(new_image)

    # Specify the font size and font path
    font_size = 14  # Adjust font size as needed
    # font = ImageFont.truetype(font_path, font_size)

    # Manually split the text into two lines
    line1, line2 = text[:len(text) // 2], text[len(text) // 2:]

    # Update the position for the first line of text to ensure both lines are centered vertically
    text_position_line1 = (10, original_image.height + (text_height - font_size) // 2)

    # Define the text color
    text_color = "white"

    # Add the first line of text to the new image
    draw.text(text_position_line1, line1, fill=text_color)

    # Adjust the position for the second line of text, based on the height of the first line
    text_position_line2 = (10, text_position_line1[1] + font_size)

    # Add the second line of text to the new image
    draw.text(text_position_line2, line2, fill=text_color)

    return new_image



for j in range(len(image_paths)):
    image_path = image_paths[j]
    starting_text = starting_texts[j]
    text_seq = texts[j]
    image = Image.open(image_path).convert('RGB')

    save_folder = '{}/val_{}'.format(save_dir, j)

    os.makedirs(save_folder, exist_ok=True)

    init_image = add_subtitle(image, starting_text)
    save_path = os.path.join(save_folder, '000start_image.jpg')
    init_image.save(save_path)

    sink_kv_cache = []
    agent_model.llm.base_model.model.kv_cache_head = None
    agent_model.llm.base_model.model.past_key_values = None
    agent_model.llm.base_model.model.use_kv_cache_head = False

    image_tensor = image_transform(image).unsqueeze(0).to(device, dtype=dtype)

    image_tokens = BOI_TOKEN + ''.join([IMG_TOKEN.format(int(item)) for item in range(num_img_in_tokens)]) + EOI_TOKEN

    text = text_seq[0]
    prompt = instruction_prompt.format_map({'instruction': starting_text + image_tokens}) + text
    print(prompt)
    print('*' * 20)

    input_ids = tokenizer.encode(prompt, add_special_tokens=False)
    input_ids = [tokenizer.bos_token_id] + input_ids

    boi_idx = input_ids.index(boi_token_id)
    eoi_idx = input_ids.index(eoi_token_id)

    input_ids = torch.tensor(input_ids).to(device, dtype=torch.long).unsqueeze(0)

    ids_cmp_mask = torch.zeros_like(input_ids, dtype=torch.bool)

    ids_cmp_mask[0, boi_idx + 1:eoi_idx] = True
    embeds_cmp_mask = torch.tensor([True]).to(device, dtype=torch.bool)

    with torch.no_grad():
        image_embeds = visual_encoder(image_tensor)
    left = 0
    right = input_ids.shape[1]
    output = agent_model.generate(tokenizer=tokenizer,
                                  input_ids=input_ids,
                                  image_embeds=image_embeds,
                                  embeds_cmp_mask=embeds_cmp_mask,
                                  ids_cmp_mask=ids_cmp_mask,
                                  max_new_tokens=500,
                                  num_img_gen_tokens=num_img_out_tokens,
                                  )
    with open("{}/text.txt".format(save_folder), 'a+') as text_file:
        text_file.write(text + '\n')
    with open("{}/token.txt".format(save_folder), 'a+') as token_file:
        token_file.write("context token: {} boi_idx: {}\n".format(input_ids.shape, boi_idx))

    story_len = 25
    window_size = 8
    text_id = 1
    while output['has_img_output'] and image_embeds.shape[0] < story_len:
        image_embeds_gen = output['img_gen_feat']
        images_gen = adapter.generate(image_embeds=output['img_gen_feat'], num_inference_steps=50)

        name = '{:02d}.jpg'.format(text_id)
        save_path = os.path.join(save_folder, name)

        # Open the generated image
        original_image = images_gen[0]
        ori_path = os.path.join(save_folder, 'ori_{:02d}.jpg'.format(text_id))
        original_image.save(ori_path)

        new_image = add_subtitle(original_image, text)
        # Save the modified image
        new_image.save(save_path)

        image_embeds = torch.cat((image_embeds, image_embeds_gen), dim=0)

        # next gen
        text = text_seq[text_id]
        text_id += 1

        # image_embeds = torch.cat((image_embeds, image_embeds_gen), dim=0)
        if text_id >= story_len - 1:
            break

        past_key_values = [[kv[:, :, :input_ids.shape[1], :] for kv in l] for l in output['past_key_values']]
        agent_model.llm.base_model.model.kv_cache_head = input_ids.shape[1]

        prompt = prompt + image_tokens + text
        next_input_ids = tokenizer.encode(image_tokens + text, add_special_tokens=False)
        next_input_ids = torch.tensor(next_input_ids).to(device, dtype=torch.long).unsqueeze(0)
        input_ids = torch.cat((input_ids, next_input_ids), dim=1)
        left = right
        right = input_ids.shape[1]


        while image_embeds.shape[0] > window_size:

            eoi_prompt_idx = prompt.index(EOI_TOKEN)
            prompt = prompt[eoi_prompt_idx + len(EOI_TOKEN) :]

            boi_idx = torch.where(input_ids == boi_token_id)[1].tolist()
            eoi_idx = torch.where(input_ids == eoi_token_id)[1].tolist()

            image_embeds = image_embeds[1:]
            input_ids = input_ids[:, eoi_idx[0]+1:]

            # slice kv cache
            if cache_mode == 'img_head_tail':
                if len(sink_kv_cache) == 0:
                    sink_kv_cache = [
                        [
                            kv[:, :, :4, :] for kv in l
                        ] for l in past_key_values
                    ]
                sink_kv_cache = [
                    [
                        torch.cat(
                            (sink_kv_cache[l_idx][kv_idx],
                             kv[:, :, boi_idx[0] - 4:boi_idx[0] + 8, :],
                             kv[:, :, eoi_idx[0] - 8:eoi_idx[0] + 4, :]),
                            dim=2
                        ) for kv_idx, kv in enumerate(l)
                    ] for l_idx, l in enumerate(past_key_values)
                ]
                past_key_values = [
                    [
                        torch.cat(
                            (sink_kv_cache[l_idx][kv_idx],
                             kv[:, :, eoi_idx[0] + sink_kv_cache[0][0].shape[2] + 1:, :]),
                            dim=2
                        ) for kv_idx, kv in enumerate(l)
                    ] for l_idx, l in enumerate(past_key_values)
                ]
            # slice Left right
            agent_model.llm.base_model.model.kv_cache_head -= eoi_idx[0] + 1
            left -= eoi_idx[0] + 1
            right -= eoi_idx[0] + 1

        print("prompt: {}".format(prompt))
        print('*' * 20)

        boi_idx = torch.where(input_ids == boi_token_id)[1].tolist()
        eoi_idx = torch.where(input_ids == eoi_token_id)[1].tolist()

        ids_cmp_mask = torch.zeros_like(input_ids, dtype=torch.bool)

        for i in range(image_embeds.shape[0]):
            ids_cmp_mask[0, boi_idx[i] + 1:eoi_idx[i]] = True
        embeds_cmp_mask = torch.tensor([True] * image_embeds.shape[0]).to(device, dtype=torch.bool)

        output = agent_model.generate(tokenizer=tokenizer,
                                      input_ids=input_ids,
                                      image_embeds=image_embeds,
                                      embeds_cmp_mask=embeds_cmp_mask,
                                      ids_cmp_mask=ids_cmp_mask,
                                      max_new_tokens=500,
                                      num_img_gen_tokens=num_img_out_tokens,
                                      past_key_values=None)
        with open("{}/text.txt".format(save_folder), 'a+') as text_file:
            text_file.write(text + '\n')
        with open("{}/token.txt".format(save_folder), 'a+') as token_file:
            token_file.write("context token: {} boi_idx: {}\n".format(input_ids.shape, boi_idx))