Spaces:
Runtime error
Runtime error
File size: 8,057 Bytes
674d663 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
import json
from openai import OpenAI
import ast
import time
import os
import base64
# from PIL import Image
import io
import re
client = OpenAI(
base_url="YOUR_URL",
api_key="YOUR_KEY",
)
style_instruction = "Please act as an impartial judge and evaluate the quality of the generation story contents provided by an AI assistant. Your job is to give a score out of 10. Your evaluation should consider the style consistency of the story images. Do not allow the length of the responses to influence your evaluation. Be as objective as possible. After providing your explanation, output your final score by strictly following this format: \"[[score]]\", such as \"[[7]]\"."
engage_instruction = "Please act as an impartial judge and evaluate the quality of the generation story contents provided by an AI assistant. Your job is to give a score out of 10. Your evaluation should consider the engaging level of the story. Do not allow the length of the responses to influence your evaluation. Be as objective as possible. After providing your explanation, output your final score by strictly following this format: \"[[score]]\", such as \"[[7]]\"."
coherence_instruction = "Please act as an impartial judge and evaluate the quality of the generation story contents provided by an AI assistant. Your job is to give a score out of 10. Your evaluation should consider the coherence of the generated story images and text. Do not allow the length of the responses to influence your evaluation. Be as objective as possible. After providing your explanation, output your final score by strictly following this format: \"[[score]]\", such as \"[[7]]\"."
def api_call(messages):
try_times = 0
while try_times < 3:
try:
chat_completion = client.chat.completions.create(
messages=messages,
model="gpt-4-turbo-2024-04-09", #"gpt-4-0125-preview", #"claude-3-opus-20240229", #"gpt-4-1106-preview",
max_tokens=4096,
temperature=0.3,
# stop=['<wait to execute>']
)
success = True
break
except Exception as e:
print(f"Error during API call: {e}")
time.sleep(15)
try_times += 1
success = False
if success:
cleaned_string = chat_completion.choices[0].message.content.strip()
return cleaned_string
else:
return None
def encode_image(image_path):
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode("utf-8")
def read_json_and_extract_content(filepath):
"""
Reads a JSON file and extracts sentences and images.
Args:
filepath (str): The path to the JSON file.
Returns:
dict: A dictionary with two keys 'sentences' and 'images', containing the respective content.
"""
with open(filepath, 'r') as file:
data = json.load(file)
all_content = []
for line in data:
extracted_content = {
"sentences": [],
"images": []
}
# Matching sentences to their corresponding images using their indices
for ix in line['sentence_ixs']:
if ix == 0:
continue
extracted_content['sentences'].append(line['sentences'][ix].replace('<|beginofimage|>', ''))
extracted_content['images'].append(line['images'][ix])
all_content.append(extracted_content)
return all_content
def read_seed_content_from_folders(base_path):
"""
Reads sentences from text.txt and image paths from subfolders named val_x.
Args:
base_path (str): Path to the main folder containing subfolders val_0 to val_179.
Returns:
list of dict: Each dictionary contains 'sentences' and 'images' from each subfolder.
"""
contents = []
# Iterate over each possible subfolder val_0 to val_179
for i in range(180): # 0 to 179 inclusive
folder_name = f"val_{i}"
folder_path = os.path.join(base_path, folder_name)
if os.path.exists(folder_path):
content_dict = {
"sentences": [],
"images": []
}
# Read sentences from text.txt
text_file_path = os.path.join(folder_path, 'text.txt')
if os.path.isfile(text_file_path):
with open(text_file_path, 'r') as file:
content_dict['sentences'] = file.read().splitlines()[:6]
content_dict['sentences'] = [s.replace('[INST]', '') for s in content_dict['sentences'] ]
# Collect paths for the images ori_01 to ori_06
for j in range(1, 7): # 1 to 6 inclusive
image_name = f"ori_0{j}.jpg" # Assuming the images are in .jpg format
image_path = os.path.join(folder_path, image_name)
if os.path.isfile(image_path):
content_dict['images'].append(image_path)
# Add the content dictionary to the list if it contains any images or sentences
if content_dict['sentences'] or content_dict['images']:
contents.append(content_dict)
return contents
def evaluate_models(assistant_a, instruction):
print(assistant_a, instruction)
# Encode all images to base64
images_a_base64 = [encode_image(img_path) for img_path in assistant_a['images'][:5]]
# Extract the stories from both assistants
story_a = assistant_a['sentences']
messages = []
# A
messages.append(
{
"role": "user",
"content": [
{
"type": "text",
"text": "Story text from Assistant A: {}\n".format(story_a[:5])
}
]
}
)
messages.append(
{
"role": "user",
"content": [
{
"type": "text",
"text": "Images are encoded in base64.\n"
}
]
}
)
for img_a in images_a_base64:
messages.append({
"role": "user",
"content": [
{
"type": "image_url",
"image_url": {"url": f"data:image/jpeg;base64,{img_a}"}
}
]
})
# INST
messages.append(
{
"role": "user",
"content": [
{
"type": "text",
"text": instruction
}
]
}
)
# Combine stories and encoded images into the evaluation instruction
result = api_call(messages)
print(result)
return result
def find_number_in_string(input_string):
# Regular expression to find [[number]]
pattern = r'\[\[(\d+)\]\]'
match = re.search(pattern, input_string)
if match:
return int(match.group(1)) # Return the number as an integer
else:
return None # No match found
def main():
# read mm json
# mm_contents = read_json_and_extract_content('/group/40034/shuaisyang/seed_project/StorySalon/llm_eval/mm_eval.json')
seed_contents = read_seed_content_from_folders('/group/40034/shuaisyang/seed_project/StorySalon/llm_eval/gen_george')
# assert len(mm_contents) == len(seed_contents)
# mm_win = 0
seed_win = 0
# tie = 0
error = []
metrics = ['style', 'engaging', 'coherence']
for idx, ins in enumerate((style_instruction, engage_instruction, coherence_instruction)):
total_score = 0
scores = ''
for i in range(len(seed_contents)):
seed = seed_contents[i]
judgment = evaluate_models(seed, ins)
number_found = find_number_in_string(judgment)
scores += str(number_found) + '\n'
total_score += number_found
with open('result_{}.txt'.format(metrics[idx]), 'w') as f:
f.write("total:{}\navg:{}\nscores:{}".format(total_score, total_score/len(seed_contents), scores))
main() |