File size: 20,871 Bytes
674d663
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
# flake8: noqa
import hydra

import pyrootutils
import os
import torch
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import ProjectConfiguration

from tqdm.auto import tqdm
from omegaconf import OmegaConf
from omegaconf.dictconfig import DictConfig
from diffusers import AutoencoderKL, DDPMScheduler, UNet2DConditionModel, DPMSolverMultistepScheduler, \
    Transformer2DModel

from transformers import CLIPTextModel, CLIPTokenizer
import argparse
from flask import Flask, request
from typing import List, Union
import json
from typing import Optional
import transformers
from dataclasses import dataclass, field, asdict, is_dataclass
from torchdata.dataloader2 import DataLoader2, MultiProcessingReadingService, DistributedReadingService, \
    SequentialReadingService
import logging

pyrootutils.setup_root(__file__, indicator='.project-root', pythonpath=True)
from src.train.schedular import get_scheduler
from src.train.dist_utils import all_gather

# logger = get_logger(__name__, log_level='info')
log_format = '%(asctime)s - %(name)s - %(levelname)s - %(message)s'
logging.basicConfig(level=logging.INFO, format=log_format)

logger = logging.getLogger(__name__)


# os.environ["WANDB_MODE"] = "offline"


@dataclass
class ConfigPathArguments:
    image_transform: Optional[str] = field(default=None, metadata={"help": "config path of image transform"})
    sd_image_transform: Optional[str] = field(default=None,
                                              metadata={"help": "config path of stable diffusion image transform"})
    # tokenizer: Optional[str] = field(default=None, metadata={"help": "config path of tokenizer used to initialize tokenizer"})
    visual_encoder: Optional[str] = field(default=None, metadata={"help": "config path of visual encoder"})
    # text_encoder: Optional[str] = field(default=None, metadata={"help": "config path of visual encoder"})
    discrete_model: Optional[str] = field(default=None, metadata={"help": "config path of discrete model"})
    # noise_scheduler: Optional[str] = field(default=None, metadata={"help": "config path of noise scheduler"})
    # vae: Optional[str] = field(default=None, metadata={"help": "config path of vae"})
    adapter: Optional[str] = field(default=None, metadata={"help": "config path of adapter"})
    train_dataset: Optional[str] = field(default=None, metadata={"help": "config path of training dataset"})
    fsdp_plugin: Optional[str] = field(default=None, metadata={"help": "config path of fsdp plugin"})
    deepspeed_plugin: Optional[str] = field(default=None, metadata={"help": "config path of deepspeed plugin"})
    tokenizer: Optional[str] = field(default=None,
                                     metadata={"help": "config path of tokenizer used to initialize tokenizer"})
    llm_model: Optional[str] = field(default=None, metadata={"help": "config path of llm"})
    agent_model: Optional[str] = field(default=None, metadata={"help": "config path of agent"})


@dataclass
class TrainingArguments:
    output_dir: str = field(
        metadata={"help": "The output directory where the model predictions and checkpoints will be written."}, )
    diffusion_model_path: Optional[str] = field(default=None, metadata={"help": "config path of training dataset"})
    resume_from_checkpoint: Optional[str] = field(
        default=None, metadata={"help": "The path to a folder with a valid checkpoint for your model."})
    resume_steps: Optional[int] = field(default=None, metadata={"help": "The training sterps of saved checkpoint"})
    learning_rate: float = field(default=5e-5, metadata={"help": "The initial learning rate for AdamW."})
    weight_decay: float = field(default=0.0, metadata={"help": "Weight decay for AdamW if we apply some."})
    # adam_beta1: float = field(default=0.9, metadata={"help": "Beta1 for AdamW optimizer"})
    # adam_beta2: float = field(default=0.999, metadata={"help": "Beta2 for AdamW optimizer"})
    # adam_epsilon: float = field(default=1e-8, metadata={"help": "Epsilon for AdamW optimizer."})
    max_grad_norm: float = field(default=1.0, metadata={"help": "Max gradient norm."})
    gradient_accumulation_steps: int = field(
        default=1, metadata={"help": "Number of updates steps to accumulate before performing a backward/update pass."})
    mixed_precision: Optional[str] = field(
        default='no',
        metadata={
            "help":
                "Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=1.10.and an Nvidia Ampere GPU."
        })
    num_train_epochs: int = field(default=3, metadata={"help": "Total number of training epochs to perform."})
    max_steps: int = field(default=-1, metadata={"help": "Total number of training steps to perform. "})
    save_steps: int = field(default=10000, metadata={"help": "Number of updates steps before two checkpoint saves."})
    lr_scheduler_type: str = field(default="cosine", metadata={"help": "The scheduler type to use."})
    warmup_steps: int = field(default=0, metadata={"help": "Linear warmup over warmup_steps."})
    min_lr_ratio: float = field(default=0.01, metadata={"help": "Minimal learning rate ratio."})
    dataloader_num_workers: int = field(default=8, metadata={"help": "The number of workers to use for data loading."})
    project_name: str = field(default="IPAdapter", metadata={"help": "The name of experiment"})
    expr_name: str = field(default="", metadata={"help": "The name of experiment"})


def build_dataloader(dataset_cfg, image_transform, sd_image_transform, tokenizer, dataloader_num_workers=4):
    dataset = hydra.utils.instantiate(dataset_cfg,
                                      image_transform=image_transform,
                                      sd_image_transform=sd_image_transform,
                                      tokenizer=tokenizer)
    mp_service = MultiProcessingReadingService(num_workers=dataloader_num_workers)
    dist_service = DistributedReadingService()
    reading_service = SequentialReadingService(dist_service, mp_service)
    dataloader = DataLoader2(dataset, reading_service=reading_service)
    return dataloader


def get_metric(output):
    metric = {}
    for key, value in output.items():
        if 'loss' in key:
            metric[key] = value.item()
    return metric


def merge_config(**kwargs):
    config = {}
    for key, value in kwargs.items():
        if isinstance(value, argparse.Namespace):
            config[key] = vars(value)
        elif isinstance(value, DictConfig):
            config[key] = OmegaConf.to_object(value)
        elif is_dataclass(value):
            config[key] = asdict(value)
        elif isinstance(value, dict):
            config[key] = value
        else:
            logger.error(f'key: {key}, value: {value} will not be merged.')
    return config


def trainable_params(model):
    count = 0
    for name, param in model.named_parameters():
        if param.requires_grad:
            count += param.numel()
    return count


def train():
    parser = transformers.HfArgumentParser((ConfigPathArguments, TrainingArguments))
    cfg_path, args = parser.parse_args_into_dataclasses()

    project_config = ProjectConfiguration(project_dir=args.output_dir,
                                          logging_dir=os.path.join(args.output_dir, 'logs'))

    assert int(cfg_path.fsdp_plugin is not None) + int(cfg_path.deepspeed_plugin is not None) <= 1
    if cfg_path.fsdp_plugin is not None:
        fsdp_plugin_cfg = OmegaConf.load(cfg_path.fsdp_plugin)
        fsdp_plugin = hydra.utils.instantiate(fsdp_plugin_cfg)
        logger.info('Use FSDP plugin')
    else:
        fsdp_plugin = None

    if cfg_path.deepspeed_plugin is not None:
        deepspeed_plugin_cfg = OmegaConf.load(cfg_path.deepspeed_plugin)
        deepspeed_plugin = hydra.utils.instantiate(deepspeed_plugin_cfg)
        logger.info('Use deepspeed plugin')
    else:
        deepspeed_plugin = None

    accelerator = Accelerator(
        mixed_precision=args.mixed_precision,
        log_with=['tensorboard', 'wandb'],
        project_config=project_config,
        gradient_accumulation_steps=args.gradient_accumulation_steps,
        step_scheduler_with_optimizer=False,
        fsdp_plugin=fsdp_plugin,
        deepspeed_plugin=deepspeed_plugin,
    )
    logger.info('Init accelerator done.')

    if cfg_path.deepspeed_plugin is not None:
        accelerator.state.deepspeed_plugin.deepspeed_config['train_micro_batch_size_per_gpu'] = 100

    os.makedirs(args.output_dir, exist_ok=True)

    image_transform_cfg = OmegaConf.load(cfg_path.image_transform)
    image_transform = hydra.utils.instantiate(image_transform_cfg)
    sd_image_transform_cfg = OmegaConf.load(cfg_path.sd_image_transform)
    sd_image_transform = hydra.utils.instantiate(sd_image_transform_cfg)

    tokenizer_cfg = OmegaConf.load(cfg_path.tokenizer)
    tokenizer = hydra.utils.instantiate(tokenizer_cfg)

    visual_encoder_cfg = OmegaConf.load(cfg_path.visual_encoder)
    visual_encoder = hydra.utils.instantiate(visual_encoder_cfg)
    logger.info('Load visual encoder done.')

    discrete_model_cfg = OmegaConf.load(cfg_path.discrete_model)
    discrete_model = hydra.utils.instantiate(discrete_model_cfg)
    logger.info('Load discrete model done.')

    # noise_scheduler_cfg = OmegaConf.load(cfg_path.noise_scheduler)
    # noise_scheduler = hydra.utils.instantiate(noise_scheduler_cfg)

    # if cfg_path.tokenizer is not None:
    #     tokenizer_cfg = OmegaConf.load(cfg_path.tokenizer)
    #     tokenizer = hydra.utils.instantiate(tokenizer_cfg)
    # else:
    #     tokenizer_cfg = None
    #     tokenizer = None

    # if cfg_path.text_encoder is not None:
    #     text_encoder_cfg = OmegaConf.load(cfg_path.text_encoder)
    #     text_encoder = hydra.utils.instantiate(text_encoder_cfg)
    #     logger.info('Load text encoder done.')
    # else:
    #     text_encoder_cfg = None
    #     text_encoder = None

    # vae_cfg = OmegaConf.load(cfg_path.vae)
    # vae = hydra.utils.instantiate(vae_cfg)
    # logger.info('Load vae done.')

    # noise_scheduler = DDPMScheduler.from_pretrained(args.diffusion_model_path, subfolder="scheduler")
    # tokenizer = CLIPTokenizer.from_pretrained(args.diffusion_model_path, subfolder="tokenizer")
    # text_encoder = CLIPTextModel.from_pretrained(args.diffusion_model_path, subfolder="text_encoder")
    # vae = AutoencoderKL.from_pretrained(args.diffusion_model_path, subfolder="vae")
    # unet = UNet2DConditionModel.from_pretrained(args.diffusion_model_path, subfolder="unet")
    # print('load diffusion model done')

    # noise_scheduler = DPMSolverMultistepScheduler.from_pretrained(args.diffusion_model_path, subfolder="scheduler")
    noise_scheduler = DDPMScheduler.from_pretrained(args.diffusion_model_path, subfolder="scheduler")
    text_encoder = None
    vae = AutoencoderKL.from_pretrained(args.diffusion_model_path, subfolder="vae")
    unet = UNet2DConditionModel.from_pretrained(args.diffusion_model_path, subfolder="unet")

    unet.enable_xformers_memory_efficient_attention()
    unet.enable_gradient_checkpointing()

    vae.requires_grad_(False)
    visual_encoder.requires_grad_(False)
    discrete_model.requires_grad_(False)

    adapter_cfg = OmegaConf.load(cfg_path.adapter)
    adapter = hydra.utils.instantiate(adapter_cfg, unet=unet)
    logger.info('Load adapter done.')

    weight_dtype = torch.float32
    if accelerator.mixed_precision == "fp16":
        weight_dtype = torch.float16
    elif accelerator.mixed_precision == "bf16":
        weight_dtype = torch.bfloat16

    vae.to(accelerator.device, dtype=weight_dtype)
    visual_encoder.to(accelerator.device, dtype=weight_dtype)
    discrete_model.to(accelerator.device, dtype=weight_dtype)
    if text_encoder is not None:
        text_encoder.to(accelerator.device, dtype=weight_dtype)

    train_dataset_cfg = OmegaConf.load(cfg_path.train_dataset)
    train_dataloader = build_dataloader(dataset_cfg=train_dataset_cfg,
                                        image_transform=image_transform,
                                        sd_image_transform=sd_image_transform,
                                        tokenizer=tokenizer,
                                        dataloader_num_workers=args.dataloader_num_workers)

    llm_model_cfg = OmegaConf.load(cfg_path.llm_model)
    llm_model = hydra.utils.instantiate(llm_model_cfg)
    llm_model.gradient_checkpointing_enable()
    llm_model.config.use_cache = False
    logger.info('Load llm model done.')

    agent_model_cfg = OmegaConf.load(cfg_path.agent_model)
    agent_model = hydra.utils.instantiate(agent_model_cfg, llm=llm_model).to(accelerator.device, dtype=weight_dtype)
    agent_model.requires_grad_(False)
    agent_model.llm.base_model.model.use_kv_cache_head = False
    logger.info('Load agent model done.')

    if cfg_path.fsdp_plugin is not None:
        adapter = accelerator.prepare(adapter)

    optimizer = torch.optim.AdamW(adapter.params_to_opt(), lr=args.learning_rate, weight_decay=args.weight_decay)
    logger.info('Init optimizer done.')
    scheduler = get_scheduler(name=args.lr_scheduler_type,
                              optimizer=optimizer,
                              num_warmup_steps=args.warmup_steps,
                              num_training_steps=args.max_steps,
                              min_lr_ratio=args.min_lr_ratio)
    # accelerator.register_for_checkpointing(scheduler)

    # adapter.adapter, adapter.resampler, optimizer, scheduler = accelerator.prepare(
    #     adapter.adapter,
    #     adapter.resampler,
    #     optimizer,
    #     scheduler,
    # )

    # adapter, optimizer, scheduler = accelerator.prepare(
    #     adapter,
    #     optimizer,
    #     scheduler,
    # )
    if cfg_path.fsdp_plugin is not None:
        optimizer, scheduler = accelerator.prepare(optimizer, scheduler)
    else:
        adapter, optimizer, scheduler = accelerator.prepare(adapter, optimizer, scheduler)
    logger.info('Prepare accelerator done.')

    # config_record = merge_config(discrete_model=discrete_model_cfg,
    #                              visual_encoder=visual_encoder_cfg,
    #                              text_encoder=text_encoder_cfg,
    #                              image_transform=image_transform_cfg,
    #                              sd_image_transform=sd_image_transform_cfg,
    #                              tokenizer=tokenizer_cfg,
    #                              train_dataset=train_dataset_cfg,
    #                              vae=vae_cfg,
    #                              adapter=adapter_cfg,
    #                              train_args=args)
    config_record = merge_config(discrete_model=discrete_model_cfg,
                                 visual_encoder=visual_encoder_cfg,
                                 image_transform=image_transform_cfg,
                                 sd_image_transform=sd_image_transform_cfg,
                                 train_dataset=train_dataset_cfg,
                                 adapter=adapter_cfg,
                                 train_args=args,
                                 agent_model=agent_model_cfg,
                                 llm_model=llm_model,
                                 tokenizer=tokenizer_cfg)
    accelerator.init_trackers(project_name=args.project_name,
                              init_kwargs={"wandb": {
                                  "config": config_record,
                                  "name": args.expr_name,
                                  "dir": args.output_dir
                              }})
    if args.resume_from_checkpoint is not None:
        logger.info(f'Load checkpoint from {args.resume_from_checkpoint}')
        accelerator.load_state(args.resume_from_checkpoint)

    num_params = trainable_params(adapter)
    logger.info("***** Running training *****")
    logger.info(f"  Total optimization steps = {args.max_steps}")
    logger.info(f"  Total trainable params = {num_params}")
    for name, param in adapter.named_parameters():
        if param.requires_grad:
            print(name)
    # print(f'adapter: {trainable_params(adapter.adapter)}')
    # print(f'resampler: {trainable_params(adapter.resampler)}')
    # Only show the progress bar once on each machine.
    progress_bar = tqdm(range(args.max_steps), disable=not accelerator.is_main_process)
    progress_bar.set_description("Steps")
    global_step = 0
    if args.resume_steps is not None:
        global_step = args.resume_steps
        progress_bar.update(args.resume_steps)

    for epoch in range(args.num_train_epochs):
        logger.info('Start new epoch')
        for step, batch in enumerate(train_dataloader):
            with accelerator.accumulate(adapter):
                with torch.no_grad():
                    image_embeds = visual_encoder(batch['images'].to(accelerator.device, dtype=weight_dtype))
                    image_embeds = discrete_model.encode_image_embeds(image_embeds)
                    if text_encoder is not None:
                        text_embeds = text_encoder(batch['text_input_ids'].to(accelerator.device))[0]
                    else:
                        text_embeds = None
                    latents = vae.encode(
                        batch["sd_images"].to(accelerator.device, dtype=weight_dtype)).latent_dist.sample()
                    latents = latents * vae.config.scaling_factor
                    llm_output = agent_model(input_ids=batch['input_ids'].to(accelerator.device),
                                             attention_mask=batch['attention_mask'].to(accelerator.device),
                                             labels=batch['labels'].to(accelerator.device),
                                             image_embeds=image_embeds,
                                             embeds_gen_mask=batch['embeds_gen_mask'].to(accelerator.device)
                                             if batch['embeds_gen_mask'] is not None else None,
                                             embeds_cmp_mask=batch['embeds_cmp_mask'].to(accelerator.device)
                                             if batch['embeds_cmp_mask'] is not None else None,
                                             ids_gen_mask=batch['ids_gen_mask'].to(accelerator.device),
                                             ids_cmp_mask=batch['ids_cmp_mask'].to(accelerator.device),
                                             return_recon_image_embeds=True)

                time_ids = batch['time_ids'].to(accelerator.device)

                # Sample noise that we'll add to the latents
                noise = torch.randn_like(latents)
                bsz = latents.shape[0]
                # Sample a random timestep for each image
                timesteps = torch.randint(0, noise_scheduler.num_train_timesteps, (bsz,), device=latents.device)
                timesteps = timesteps.long()

                # Add noise to the latents according to the noise magnitude at each timestep
                # (this is the forward diffusion process)
                noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)

                output = adapter(noisy_latents=noisy_latents,
                                 timesteps=timesteps,
                                 image_embeds=llm_output['recon_image_embeds'],
                                 text_embeds=None,
                                 noise=noise,
                                 time_ids=time_ids)

                loss = output['total_loss']
                accelerator.backward(loss)
                if accelerator.sync_gradients:
                    accelerator.clip_grad_norm_(adapter.parameters(), max_norm=args.max_grad_norm)
                optimizer.step()
                scheduler.step()
                optimizer.zero_grad()

            if accelerator.sync_gradients:
                progress_bar.update(1)
                global_step += 1

                if global_step % args.save_steps == 0:
                    save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}")
                    accelerator.save_state(save_path)

            metric = get_metric(output)
            metric['lr'] = optimizer.param_groups[0]['lr']
            accelerator.log(metric, step=global_step)
            metric = {key: (format(value, ".6f") if isinstance(value, float) else value) for key, value in
                      metric.items()}

            # if accelerator.is_local_main_process:
            if accelerator.is_main_process:
                tqdm.write(str(metric))
            # print(metric)
            if global_step >= args.max_steps:
                break

    accelerator.end_training()


if __name__ == '__main__':
    train()