Spaces:
Runtime error
Runtime error
File size: 20,871 Bytes
674d663 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 |
# flake8: noqa
import hydra
import pyrootutils
import os
import torch
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import ProjectConfiguration
from tqdm.auto import tqdm
from omegaconf import OmegaConf
from omegaconf.dictconfig import DictConfig
from diffusers import AutoencoderKL, DDPMScheduler, UNet2DConditionModel, DPMSolverMultistepScheduler, \
Transformer2DModel
from transformers import CLIPTextModel, CLIPTokenizer
import argparse
from flask import Flask, request
from typing import List, Union
import json
from typing import Optional
import transformers
from dataclasses import dataclass, field, asdict, is_dataclass
from torchdata.dataloader2 import DataLoader2, MultiProcessingReadingService, DistributedReadingService, \
SequentialReadingService
import logging
pyrootutils.setup_root(__file__, indicator='.project-root', pythonpath=True)
from src.train.schedular import get_scheduler
from src.train.dist_utils import all_gather
# logger = get_logger(__name__, log_level='info')
log_format = '%(asctime)s - %(name)s - %(levelname)s - %(message)s'
logging.basicConfig(level=logging.INFO, format=log_format)
logger = logging.getLogger(__name__)
# os.environ["WANDB_MODE"] = "offline"
@dataclass
class ConfigPathArguments:
image_transform: Optional[str] = field(default=None, metadata={"help": "config path of image transform"})
sd_image_transform: Optional[str] = field(default=None,
metadata={"help": "config path of stable diffusion image transform"})
# tokenizer: Optional[str] = field(default=None, metadata={"help": "config path of tokenizer used to initialize tokenizer"})
visual_encoder: Optional[str] = field(default=None, metadata={"help": "config path of visual encoder"})
# text_encoder: Optional[str] = field(default=None, metadata={"help": "config path of visual encoder"})
discrete_model: Optional[str] = field(default=None, metadata={"help": "config path of discrete model"})
# noise_scheduler: Optional[str] = field(default=None, metadata={"help": "config path of noise scheduler"})
# vae: Optional[str] = field(default=None, metadata={"help": "config path of vae"})
adapter: Optional[str] = field(default=None, metadata={"help": "config path of adapter"})
train_dataset: Optional[str] = field(default=None, metadata={"help": "config path of training dataset"})
fsdp_plugin: Optional[str] = field(default=None, metadata={"help": "config path of fsdp plugin"})
deepspeed_plugin: Optional[str] = field(default=None, metadata={"help": "config path of deepspeed plugin"})
tokenizer: Optional[str] = field(default=None,
metadata={"help": "config path of tokenizer used to initialize tokenizer"})
llm_model: Optional[str] = field(default=None, metadata={"help": "config path of llm"})
agent_model: Optional[str] = field(default=None, metadata={"help": "config path of agent"})
@dataclass
class TrainingArguments:
output_dir: str = field(
metadata={"help": "The output directory where the model predictions and checkpoints will be written."}, )
diffusion_model_path: Optional[str] = field(default=None, metadata={"help": "config path of training dataset"})
resume_from_checkpoint: Optional[str] = field(
default=None, metadata={"help": "The path to a folder with a valid checkpoint for your model."})
resume_steps: Optional[int] = field(default=None, metadata={"help": "The training sterps of saved checkpoint"})
learning_rate: float = field(default=5e-5, metadata={"help": "The initial learning rate for AdamW."})
weight_decay: float = field(default=0.0, metadata={"help": "Weight decay for AdamW if we apply some."})
# adam_beta1: float = field(default=0.9, metadata={"help": "Beta1 for AdamW optimizer"})
# adam_beta2: float = field(default=0.999, metadata={"help": "Beta2 for AdamW optimizer"})
# adam_epsilon: float = field(default=1e-8, metadata={"help": "Epsilon for AdamW optimizer."})
max_grad_norm: float = field(default=1.0, metadata={"help": "Max gradient norm."})
gradient_accumulation_steps: int = field(
default=1, metadata={"help": "Number of updates steps to accumulate before performing a backward/update pass."})
mixed_precision: Optional[str] = field(
default='no',
metadata={
"help":
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=1.10.and an Nvidia Ampere GPU."
})
num_train_epochs: int = field(default=3, metadata={"help": "Total number of training epochs to perform."})
max_steps: int = field(default=-1, metadata={"help": "Total number of training steps to perform. "})
save_steps: int = field(default=10000, metadata={"help": "Number of updates steps before two checkpoint saves."})
lr_scheduler_type: str = field(default="cosine", metadata={"help": "The scheduler type to use."})
warmup_steps: int = field(default=0, metadata={"help": "Linear warmup over warmup_steps."})
min_lr_ratio: float = field(default=0.01, metadata={"help": "Minimal learning rate ratio."})
dataloader_num_workers: int = field(default=8, metadata={"help": "The number of workers to use for data loading."})
project_name: str = field(default="IPAdapter", metadata={"help": "The name of experiment"})
expr_name: str = field(default="", metadata={"help": "The name of experiment"})
def build_dataloader(dataset_cfg, image_transform, sd_image_transform, tokenizer, dataloader_num_workers=4):
dataset = hydra.utils.instantiate(dataset_cfg,
image_transform=image_transform,
sd_image_transform=sd_image_transform,
tokenizer=tokenizer)
mp_service = MultiProcessingReadingService(num_workers=dataloader_num_workers)
dist_service = DistributedReadingService()
reading_service = SequentialReadingService(dist_service, mp_service)
dataloader = DataLoader2(dataset, reading_service=reading_service)
return dataloader
def get_metric(output):
metric = {}
for key, value in output.items():
if 'loss' in key:
metric[key] = value.item()
return metric
def merge_config(**kwargs):
config = {}
for key, value in kwargs.items():
if isinstance(value, argparse.Namespace):
config[key] = vars(value)
elif isinstance(value, DictConfig):
config[key] = OmegaConf.to_object(value)
elif is_dataclass(value):
config[key] = asdict(value)
elif isinstance(value, dict):
config[key] = value
else:
logger.error(f'key: {key}, value: {value} will not be merged.')
return config
def trainable_params(model):
count = 0
for name, param in model.named_parameters():
if param.requires_grad:
count += param.numel()
return count
def train():
parser = transformers.HfArgumentParser((ConfigPathArguments, TrainingArguments))
cfg_path, args = parser.parse_args_into_dataclasses()
project_config = ProjectConfiguration(project_dir=args.output_dir,
logging_dir=os.path.join(args.output_dir, 'logs'))
assert int(cfg_path.fsdp_plugin is not None) + int(cfg_path.deepspeed_plugin is not None) <= 1
if cfg_path.fsdp_plugin is not None:
fsdp_plugin_cfg = OmegaConf.load(cfg_path.fsdp_plugin)
fsdp_plugin = hydra.utils.instantiate(fsdp_plugin_cfg)
logger.info('Use FSDP plugin')
else:
fsdp_plugin = None
if cfg_path.deepspeed_plugin is not None:
deepspeed_plugin_cfg = OmegaConf.load(cfg_path.deepspeed_plugin)
deepspeed_plugin = hydra.utils.instantiate(deepspeed_plugin_cfg)
logger.info('Use deepspeed plugin')
else:
deepspeed_plugin = None
accelerator = Accelerator(
mixed_precision=args.mixed_precision,
log_with=['tensorboard', 'wandb'],
project_config=project_config,
gradient_accumulation_steps=args.gradient_accumulation_steps,
step_scheduler_with_optimizer=False,
fsdp_plugin=fsdp_plugin,
deepspeed_plugin=deepspeed_plugin,
)
logger.info('Init accelerator done.')
if cfg_path.deepspeed_plugin is not None:
accelerator.state.deepspeed_plugin.deepspeed_config['train_micro_batch_size_per_gpu'] = 100
os.makedirs(args.output_dir, exist_ok=True)
image_transform_cfg = OmegaConf.load(cfg_path.image_transform)
image_transform = hydra.utils.instantiate(image_transform_cfg)
sd_image_transform_cfg = OmegaConf.load(cfg_path.sd_image_transform)
sd_image_transform = hydra.utils.instantiate(sd_image_transform_cfg)
tokenizer_cfg = OmegaConf.load(cfg_path.tokenizer)
tokenizer = hydra.utils.instantiate(tokenizer_cfg)
visual_encoder_cfg = OmegaConf.load(cfg_path.visual_encoder)
visual_encoder = hydra.utils.instantiate(visual_encoder_cfg)
logger.info('Load visual encoder done.')
discrete_model_cfg = OmegaConf.load(cfg_path.discrete_model)
discrete_model = hydra.utils.instantiate(discrete_model_cfg)
logger.info('Load discrete model done.')
# noise_scheduler_cfg = OmegaConf.load(cfg_path.noise_scheduler)
# noise_scheduler = hydra.utils.instantiate(noise_scheduler_cfg)
# if cfg_path.tokenizer is not None:
# tokenizer_cfg = OmegaConf.load(cfg_path.tokenizer)
# tokenizer = hydra.utils.instantiate(tokenizer_cfg)
# else:
# tokenizer_cfg = None
# tokenizer = None
# if cfg_path.text_encoder is not None:
# text_encoder_cfg = OmegaConf.load(cfg_path.text_encoder)
# text_encoder = hydra.utils.instantiate(text_encoder_cfg)
# logger.info('Load text encoder done.')
# else:
# text_encoder_cfg = None
# text_encoder = None
# vae_cfg = OmegaConf.load(cfg_path.vae)
# vae = hydra.utils.instantiate(vae_cfg)
# logger.info('Load vae done.')
# noise_scheduler = DDPMScheduler.from_pretrained(args.diffusion_model_path, subfolder="scheduler")
# tokenizer = CLIPTokenizer.from_pretrained(args.diffusion_model_path, subfolder="tokenizer")
# text_encoder = CLIPTextModel.from_pretrained(args.diffusion_model_path, subfolder="text_encoder")
# vae = AutoencoderKL.from_pretrained(args.diffusion_model_path, subfolder="vae")
# unet = UNet2DConditionModel.from_pretrained(args.diffusion_model_path, subfolder="unet")
# print('load diffusion model done')
# noise_scheduler = DPMSolverMultistepScheduler.from_pretrained(args.diffusion_model_path, subfolder="scheduler")
noise_scheduler = DDPMScheduler.from_pretrained(args.diffusion_model_path, subfolder="scheduler")
text_encoder = None
vae = AutoencoderKL.from_pretrained(args.diffusion_model_path, subfolder="vae")
unet = UNet2DConditionModel.from_pretrained(args.diffusion_model_path, subfolder="unet")
unet.enable_xformers_memory_efficient_attention()
unet.enable_gradient_checkpointing()
vae.requires_grad_(False)
visual_encoder.requires_grad_(False)
discrete_model.requires_grad_(False)
adapter_cfg = OmegaConf.load(cfg_path.adapter)
adapter = hydra.utils.instantiate(adapter_cfg, unet=unet)
logger.info('Load adapter done.')
weight_dtype = torch.float32
if accelerator.mixed_precision == "fp16":
weight_dtype = torch.float16
elif accelerator.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
vae.to(accelerator.device, dtype=weight_dtype)
visual_encoder.to(accelerator.device, dtype=weight_dtype)
discrete_model.to(accelerator.device, dtype=weight_dtype)
if text_encoder is not None:
text_encoder.to(accelerator.device, dtype=weight_dtype)
train_dataset_cfg = OmegaConf.load(cfg_path.train_dataset)
train_dataloader = build_dataloader(dataset_cfg=train_dataset_cfg,
image_transform=image_transform,
sd_image_transform=sd_image_transform,
tokenizer=tokenizer,
dataloader_num_workers=args.dataloader_num_workers)
llm_model_cfg = OmegaConf.load(cfg_path.llm_model)
llm_model = hydra.utils.instantiate(llm_model_cfg)
llm_model.gradient_checkpointing_enable()
llm_model.config.use_cache = False
logger.info('Load llm model done.')
agent_model_cfg = OmegaConf.load(cfg_path.agent_model)
agent_model = hydra.utils.instantiate(agent_model_cfg, llm=llm_model).to(accelerator.device, dtype=weight_dtype)
agent_model.requires_grad_(False)
agent_model.llm.base_model.model.use_kv_cache_head = False
logger.info('Load agent model done.')
if cfg_path.fsdp_plugin is not None:
adapter = accelerator.prepare(adapter)
optimizer = torch.optim.AdamW(adapter.params_to_opt(), lr=args.learning_rate, weight_decay=args.weight_decay)
logger.info('Init optimizer done.')
scheduler = get_scheduler(name=args.lr_scheduler_type,
optimizer=optimizer,
num_warmup_steps=args.warmup_steps,
num_training_steps=args.max_steps,
min_lr_ratio=args.min_lr_ratio)
# accelerator.register_for_checkpointing(scheduler)
# adapter.adapter, adapter.resampler, optimizer, scheduler = accelerator.prepare(
# adapter.adapter,
# adapter.resampler,
# optimizer,
# scheduler,
# )
# adapter, optimizer, scheduler = accelerator.prepare(
# adapter,
# optimizer,
# scheduler,
# )
if cfg_path.fsdp_plugin is not None:
optimizer, scheduler = accelerator.prepare(optimizer, scheduler)
else:
adapter, optimizer, scheduler = accelerator.prepare(adapter, optimizer, scheduler)
logger.info('Prepare accelerator done.')
# config_record = merge_config(discrete_model=discrete_model_cfg,
# visual_encoder=visual_encoder_cfg,
# text_encoder=text_encoder_cfg,
# image_transform=image_transform_cfg,
# sd_image_transform=sd_image_transform_cfg,
# tokenizer=tokenizer_cfg,
# train_dataset=train_dataset_cfg,
# vae=vae_cfg,
# adapter=adapter_cfg,
# train_args=args)
config_record = merge_config(discrete_model=discrete_model_cfg,
visual_encoder=visual_encoder_cfg,
image_transform=image_transform_cfg,
sd_image_transform=sd_image_transform_cfg,
train_dataset=train_dataset_cfg,
adapter=adapter_cfg,
train_args=args,
agent_model=agent_model_cfg,
llm_model=llm_model,
tokenizer=tokenizer_cfg)
accelerator.init_trackers(project_name=args.project_name,
init_kwargs={"wandb": {
"config": config_record,
"name": args.expr_name,
"dir": args.output_dir
}})
if args.resume_from_checkpoint is not None:
logger.info(f'Load checkpoint from {args.resume_from_checkpoint}')
accelerator.load_state(args.resume_from_checkpoint)
num_params = trainable_params(adapter)
logger.info("***** Running training *****")
logger.info(f" Total optimization steps = {args.max_steps}")
logger.info(f" Total trainable params = {num_params}")
for name, param in adapter.named_parameters():
if param.requires_grad:
print(name)
# print(f'adapter: {trainable_params(adapter.adapter)}')
# print(f'resampler: {trainable_params(adapter.resampler)}')
# Only show the progress bar once on each machine.
progress_bar = tqdm(range(args.max_steps), disable=not accelerator.is_main_process)
progress_bar.set_description("Steps")
global_step = 0
if args.resume_steps is not None:
global_step = args.resume_steps
progress_bar.update(args.resume_steps)
for epoch in range(args.num_train_epochs):
logger.info('Start new epoch')
for step, batch in enumerate(train_dataloader):
with accelerator.accumulate(adapter):
with torch.no_grad():
image_embeds = visual_encoder(batch['images'].to(accelerator.device, dtype=weight_dtype))
image_embeds = discrete_model.encode_image_embeds(image_embeds)
if text_encoder is not None:
text_embeds = text_encoder(batch['text_input_ids'].to(accelerator.device))[0]
else:
text_embeds = None
latents = vae.encode(
batch["sd_images"].to(accelerator.device, dtype=weight_dtype)).latent_dist.sample()
latents = latents * vae.config.scaling_factor
llm_output = agent_model(input_ids=batch['input_ids'].to(accelerator.device),
attention_mask=batch['attention_mask'].to(accelerator.device),
labels=batch['labels'].to(accelerator.device),
image_embeds=image_embeds,
embeds_gen_mask=batch['embeds_gen_mask'].to(accelerator.device)
if batch['embeds_gen_mask'] is not None else None,
embeds_cmp_mask=batch['embeds_cmp_mask'].to(accelerator.device)
if batch['embeds_cmp_mask'] is not None else None,
ids_gen_mask=batch['ids_gen_mask'].to(accelerator.device),
ids_cmp_mask=batch['ids_cmp_mask'].to(accelerator.device),
return_recon_image_embeds=True)
time_ids = batch['time_ids'].to(accelerator.device)
# Sample noise that we'll add to the latents
noise = torch.randn_like(latents)
bsz = latents.shape[0]
# Sample a random timestep for each image
timesteps = torch.randint(0, noise_scheduler.num_train_timesteps, (bsz,), device=latents.device)
timesteps = timesteps.long()
# Add noise to the latents according to the noise magnitude at each timestep
# (this is the forward diffusion process)
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
output = adapter(noisy_latents=noisy_latents,
timesteps=timesteps,
image_embeds=llm_output['recon_image_embeds'],
text_embeds=None,
noise=noise,
time_ids=time_ids)
loss = output['total_loss']
accelerator.backward(loss)
if accelerator.sync_gradients:
accelerator.clip_grad_norm_(adapter.parameters(), max_norm=args.max_grad_norm)
optimizer.step()
scheduler.step()
optimizer.zero_grad()
if accelerator.sync_gradients:
progress_bar.update(1)
global_step += 1
if global_step % args.save_steps == 0:
save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}")
accelerator.save_state(save_path)
metric = get_metric(output)
metric['lr'] = optimizer.param_groups[0]['lr']
accelerator.log(metric, step=global_step)
metric = {key: (format(value, ".6f") if isinstance(value, float) else value) for key, value in
metric.items()}
# if accelerator.is_local_main_process:
if accelerator.is_main_process:
tqdm.write(str(metric))
# print(metric)
if global_step >= args.max_steps:
break
accelerator.end_training()
if __name__ == '__main__':
train()
|