Spaces:
Runtime error
Runtime error
File size: 23,927 Bytes
674d663 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 |
import torchdata.datapipes as dp
import json
from PIL import Image
import functools
import numpy as np
import torch
import pickle
import os
import cv2
import random
from torchvision import transforms
from braceexpand import braceexpand
import hydra
from random import choice
import tarfile
from torchdata.datapipes.iter import TarArchiveLoader
from typing import cast, IO, Iterable, Iterator, Optional, Tuple, Dict
from torchdata.datapipes import functional_datapipe
from io import BufferedIOBase
from torchdata.datapipes.utils import StreamWrapper
from torchdata.datapipes.utils.common import validate_pathname_binary_tuple
import warnings
from torchdata.datapipes.iter import IterDataPipe
import pyrootutils
pyrootutils.setup_root(__file__, indicator='.project-root', pythonpath=True)
BOI_TOKEN = '<img>'
EOI_TOKEN = '</img>'
IMG_TOKEN = '<img_{:05d}>'
gen_prompt = [
"Please show me a picture of ",
"Please design an image of ",
"Please produce a photo of ",
"Please generate an image of ",
"Please draw a painting of ",
"I'd like to see a drawing of ",
"I'd love to see an illustration of ",
"I'd like to view an image of ",
"I want to see a picture of ",
"I would like to see a photo of ",
"Show me a photo of ",
"Generate a picture of ",
"Show me a photograph of ",
"Generate an image of ",
"Generate an image: ",
"Generate a picture: ",
"Generate a painting: ",
"Generate a photograph: ",
"Show me a photograph: ",
"Draw a picture: ",
"Draw a painting: ",
"Draw an image: ",
"Can you make an image of ",
"Can you draw a painting of ",
"Can you produce a picture of ",
"Can you generate a photo of ",
"Can you depict a picture of ",
"Can you show me an illustration of ",
]
gen_prompt_response = [
"Here is a picture.",
"I have designed an image.",
"Here is a photo.",
"I have generated an image.",
"Here's a painting.",
"Here's a drawing.",
"Enjoy this illustration.",
"Take a look at this image.",
"Here is a picture.",
"I have created a photo.",
"Enjoy this photo.",
"I have generated a picture.",
"Here is a photograph.",
"Here's an image.",
"Certainly, here's an image.",
"Absolutely, here is a painting.",
"Sure, here is a picture.",
"Of course, here is a photo.",
"Certainly, please enjoy this picture.",
"Sure, please enjoy this illustration.",
"",
]
jdb_filter_vocab = ['watermark', 'watermark,', 'chaos 100', 'chaos 100,']
def filter_data_with_image_ids(item):
if ('images' not in item):
# print(item['__key__'])
# print('filtered because no images')
return False
elif 'input_ids' not in item:
return False
else:
return True
def calculate_new_dimensions(height, width, target_size):
if height < width:
new_height = target_size
new_width = int(width * (target_size / height))
else:
new_width = target_size
new_height = int(height * (target_size / width))
return new_height, new_width
def unwarp_data(item):
unwarpped = {}
for key, value in item.items():
if isinstance(value, dict):
unwarpped.update(value)
elif value is not None:
unwarpped[key] = value
if 'metadata' not in unwarpped:
unwarpped['metadata'] = '{}'
# if '__key__' in unwarpped:
# unwarpped['__key__'] = unwarpped['__key__'].split('/')[-1]
return unwarpped
# def filter_data_with_similarity(item, similarity_thr=0.2, min_resolution=180, min_aspect_ratio=0.666):
def filter_data_with_similarity(item, similarity_thr=0.2, assure_text=True):
if ('images' not in item):
# print(item['__key__'])
# print('filtered because no images')
return False
elif (not item.get('filter_flag', True)):
# print(item['__key__'])
# print('filtered because filter flag.')
return False
elif assure_text and ('text' not in item):
# print(item['__key__'])
# print('filtered because assure_text')
return False
else:
metadata = json.loads(item['metadata'])
if 'all_similarities' in metadata:
similarity = max(metadata['all_similarities'])
elif 'similarity' in metadata:
similarity = metadata['similarity']
elif 'score' in metadata:
similarity = metadata['score']
elif 'SCORE' in metadata:
similarity = metadata['SCORE']
else:
similarity = None
if similarity is not None:
if similarity < similarity_thr:
# print(item['__key__'])
# print('filtered because similarity')
return False
return True
def single_turn_edit_collate(batch):
results = {}
keys = batch[0].keys()
for key in keys:
cur = [batch[i][key] for i in range(len(batch)) if batch[i][key] is not None]
if len(cur) == 0:
results[key] = None
elif isinstance(cur[0], torch.Tensor):
if key in ['embeds_gen_mask', 'embeds_cmp_mask', 'images']:
results[key] = torch.cat(cur, dim=0)
else:
results[key] = torch.stack(cur, dim=0)
else:
results[key] = cur
return results
def decode_t2i_data(item,
image_dir,
tokenizer,
image_transform=None,
sd_image_transform=None,
max_length=128,
min_resolution=400,
instruction_prompt='[INST] {instruction} [/INST]\n',
turn_sep='\n',
system_message='',
min_aspect_ratio=0.666,
num_img_in_tokens=64,
num_img_out_tokens=64):
key, value = item
if 'image' not in value or 'caption' not in value:
return {}
image_path = os.path.join(image_dir, value["image"])
try:
image = Image.open(image_path).convert('RGB')
width, height = image.size
aspect_ratio = height / width
if height < min_resolution or width < min_resolution:
print(f'filtered because resolution: ({width},{height})')
return {}
if aspect_ratio < min_aspect_ratio or aspect_ratio > 1 / min_aspect_ratio:
print(f'filtered because aspect ratio: ({width},{height})')
return {}
### SD related
image_data = {}
if sd_image_transform is not None:
# image_data['original_sizes'] = torch.tensor([height, width])
sd_image_tensor = sd_image_transform(image)
target_size = sd_image_tensor.shape[-2]
target_width, target_height = calculate_new_dimensions(height=height, width=width, target_size=target_size)
y1 = max(0, int(round((target_height - target_size) / 2.0)))
x1 = max(0, int(round((target_width - target_size) / 2.0)))
# image_data['crop_top_lefts'] = torch.tensor([y1, x1])
image_data['time_ids'] = torch.tensor([height, width, y1, x1, target_size, target_size])
image_data['sd_images'] = sd_image_tensor
if image_transform is not None:
image = image_transform(image)
except Exception as e:
print('Error while decode image: ', e)
return {}
input_ids = []
labels = []
input_text = ''
if system_message != '':
if not system_message.endswith('\n'):
system_message += '\n'
input_text += system_message
item_ids = tokenizer.encode(system_message, add_special_tokens=False)
item_labels = [-100] * len(item_ids)
input_ids.extend(item_ids)
labels.extend(item_labels)
caption = value["caption"]
image_cmp_tokens = BOI_TOKEN + ''.join(
[IMG_TOKEN.format(int(item)) for item in range(num_img_in_tokens)]) + EOI_TOKEN
image_gen_tokens = BOI_TOKEN + ''.join(
[IMG_TOKEN.format(int(item)) for item in range(num_img_out_tokens)]) + EOI_TOKEN
instruction = instruction_prompt.format_map({'instruction': caption})
response = image_gen_tokens
images = torch.stack([image], dim=0)
# print(instruction)
item_ids = tokenizer.encode(instruction, add_special_tokens=False)
item_labels = [-100] * len(item_ids)
input_text += instruction
input_ids.extend(item_ids)
labels.extend(item_labels)
item_ids = tokenizer.encode(response, add_special_tokens=False)
item_labels = item_ids
input_text += response
input_ids.extend(item_ids)
labels.extend(item_labels)
input_ids = [tokenizer.bos_token_id] + input_ids + [tokenizer.eos_token_id]
attention_mask = [1] * len(input_ids)
labels = [-100] + labels + [tokenizer.eos_token_id]
boi_token_id = tokenizer.encode(BOI_TOKEN, add_special_tokens=False)[0]
eoi_token_id = tokenizer.encode(EOI_TOKEN, add_special_tokens=False)[0]
ids_cmp_mask = [False] * len(input_ids)
ids_gen_mask = [False] * len(input_ids)
embeds_cmp_mask = [False]
embeds_gen_mask = [True]
# print(len(input_ids))
if len(input_ids) >= max_length:
# input_ids = input_ids[:max_length]
# attention_mask = attention_mask[:max_length]
# labels = labels[:max_length]
# ids_cmp_mask = ids_cmp_mask[:max_length]
# ids_gen_mask = ids_gen_mask[:max_length]
# print('An edit sample has been removed because of max length. input_text: ', input_text)
return {}
else:
padding_length = max_length - len(input_ids)
input_ids = input_ids + [tokenizer.pad_token_id] * padding_length
attention_mask = attention_mask + [0] * padding_length
labels = labels + [-100] * padding_length
ids_cmp_mask = ids_cmp_mask + [False] * padding_length
ids_gen_mask = ids_gen_mask + [False] * padding_length
input_ids = torch.tensor(input_ids, dtype=torch.long)
attention_mask = torch.tensor(attention_mask, dtype=torch.long)
labels = torch.tensor(labels, dtype=torch.long)
ids_cmp_mask = torch.tensor(ids_cmp_mask, dtype=torch.bool)
ids_gen_mask = torch.tensor(ids_gen_mask, dtype=torch.bool)
embeds_cmp_mask = torch.tensor(embeds_cmp_mask) if embeds_cmp_mask is not None else None
embeds_gen_mask = torch.tensor(embeds_gen_mask) if embeds_gen_mask is not None else None
boi_idx = torch.where(input_ids == boi_token_id)[0].tolist()
eoi_idx = torch.where(input_ids == eoi_token_id)[0].tolist()
ids_gen_mask[boi_idx[0] + 1:eoi_idx[0]] = True
labels[boi_idx[0] + 1:eoi_idx[0] + 1] = -100
ret = {
'input_ids': input_ids,
'attention_mask': attention_mask,
'labels': labels,
'ids_gen_mask': ids_gen_mask,
'ids_cmp_mask': ids_cmp_mask,
'embeds_gen_mask': embeds_gen_mask,
'embeds_cmp_mask': embeds_cmp_mask,
'images': images,
'text': input_text,
}
ret.update(image_data)
return ret
def build_t2i_datapipe(data_dir,
image_dir,
tokenizer=None,
max_length=77,
batch_size=None,
min_resolution=180,
image_transform=None,
sd_image_transform=None,
instruction_prompt='[INST] {instruction} [INST]\n',
turn_sep='\n',
system_message='',
min_aspect_ratio=0.666,
num_img_in_tokens=64,
num_img_out_tokens=64,
cycle_count=None):
decode_partial = functools.partial(decode_t2i_data,
image_dir=image_dir,
tokenizer=tokenizer,
image_transform=image_transform,
sd_image_transform=sd_image_transform,
max_length=max_length,
instruction_prompt=instruction_prompt,
turn_sep=turn_sep,
system_message=system_message,
min_resolution=min_resolution,
min_aspect_ratio=min_aspect_ratio,
num_img_in_tokens=num_img_in_tokens,
num_img_out_tokens=num_img_out_tokens)
filter_partial = functools.partial(filter_data_with_image_ids)
if isinstance(data_dir, str):
data_dir = list(braceexpand(data_dir))
datapipe = dp.iter.FileLister(root=data_dir, masks='*.jsonl', recursive=True)
datapipe = datapipe.shuffle()
datapipe = datapipe.cycle(count=cycle_count)
datapipe = datapipe.shuffle()
# datapipe = dp.iter.FileLister(root=data_dir, masks='0000000.tar', recursive=True)
datapipe = datapipe.sharding_filter()
# datapipe = datapipe.sharding_round_robin_dispatch(SHARDING_PRIORITIES.MULTIPROCESSING)
datapipe = datapipe.open_files(mode='r')
datapipe = datapipe.parse_jsonl_files()
datapipe = datapipe.map(decode_partial)
datapipe = datapipe.filter(filter_partial)
# datapipe = datapipe.shuffle(buffer_size=1024)
if batch_size is not None:
datapipe = datapipe.batch(batch_size)
datapipe = datapipe.collate(single_turn_edit_collate)
return datapipe
def decode_long_story_data(item,
image_dir,
tokenizer,
story_len,
image_transform=None,
sd_image_transform=None,
max_length=128,
min_resolution=400,
instruction_prompt='{instruction}',
turn_sep='\n',
system_message='',
min_aspect_ratio=0.666,
num_img_in_tokens=64,
num_img_out_tokens=64, ):
key, value = item
if 'images' not in value or 'captions' not in value:
return {}
image_paths = [os.path.join(image_dir, image_path) for image_path in value["images"]]
# assert len(image_paths) == story_len
story_len = len(image_paths)
num_image_given = random.randint(0, story_len - 2)
try:
images = []
for image_path in image_paths:
image = Image.open(image_path).convert('RGB')
images.append(image)
width, height = image.size
aspect_ratio = height / width
if height < min_resolution or width < min_resolution:
print(f'filtered because resolution: ({width},{height})')
return {}
if aspect_ratio < min_aspect_ratio or aspect_ratio > 1 / min_aspect_ratio:
print(f'filtered because aspect ratio: ({width},{height})')
return {}
image_data = {}
sd_image = images[num_image_given + 1]
if sd_image_transform is not None:
# image_data['original_sizes'] = torch.tensor([height, width])
sd_image_tensor = sd_image_transform(sd_image)
target_size = sd_image_tensor.shape[-2]
target_width, target_height = calculate_new_dimensions(height=height, width=width, target_size=target_size)
y1 = max(0, int(round((target_height - target_size) / 2.0)))
x1 = max(0, int(round((target_width - target_size) / 2.0)))
# image_data['crop_top_lefts'] = torch.tensor([y1, x1])
image_data['time_ids'] = torch.tensor([height, width, y1, x1, target_size, target_size])
image_data['sd_images'] = sd_image_tensor
if image_transform is not None:
for i in range(len(images)):
images[i] = image_transform(images[i])
images = torch.stack(images, dim=0)
except Exception as e:
print('Error while decode image: ', e)
return {}
input_ids = []
labels = []
input_text = ''
if system_message != '':
if not system_message.endswith('\n'):
system_message += '\n'
input_text += system_message
item_ids = tokenizer.encode(system_message, add_special_tokens=False)
item_labels = [-100] * len(item_ids)
input_ids.extend(item_ids)
labels.extend(item_labels)
captions_all = []
for i in range(story_len):
caption = value["captions"][i]
captions_all.append(caption)
image_cmp_tokens = BOI_TOKEN + ''.join(
[IMG_TOKEN.format(int(item)) for item in range(num_img_in_tokens)]) + EOI_TOKEN
image_gen_tokens = BOI_TOKEN + ''.join(
[IMG_TOKEN.format(int(item)) for item in range(num_img_out_tokens)]) + EOI_TOKEN
instruction = instruction_prompt.format_map({'instruction': captions_all[0] + image_cmp_tokens})
for i in range(num_image_given):
instruction = instruction + "[INST]" + captions_all[i + 1] + image_cmp_tokens
response = "[INST]" + captions_all[num_image_given + 1] + image_gen_tokens
images = images[:num_image_given + 2]
# print(instruction)
item_ids = tokenizer.encode(instruction, add_special_tokens=False)
item_labels = [-100] * len(item_ids)
input_text += instruction
input_ids.extend(item_ids)
labels.extend(item_labels)
item_ids = tokenizer.encode(response, add_special_tokens=False)
item_labels = item_ids
input_text += response
input_ids.extend(item_ids)
labels.extend(item_labels)
input_ids = [tokenizer.bos_token_id] + input_ids + [tokenizer.eos_token_id]
attention_mask = [1] * len(input_ids)
labels = [-100] + labels + [tokenizer.eos_token_id]
boi_token_id = tokenizer.encode(BOI_TOKEN, add_special_tokens=False)[0]
eoi_token_id = tokenizer.encode(EOI_TOKEN, add_special_tokens=False)[0]
ids_cmp_mask = [False] * len(input_ids)
ids_gen_mask = [False] * len(input_ids)
embeds_cmp_mask = [True] + [True] * num_image_given + [False]
embeds_gen_mask = [False] + [False] * num_image_given + [True]
# print(len(input_ids))
if len(input_ids) >= max_length:
# input_ids = input_ids[:max_length]
# attention_mask = attention_mask[:max_length]
# labels = labels[:max_length]
# ids_cmp_mask = ids_cmp_mask[:max_length]
# ids_gen_mask = ids_gen_mask[:max_length]
# print('An edit sample has been removed because of max length. input_text: ', input_text)
return {}
else:
padding_length = max_length - len(input_ids)
input_ids = input_ids + [tokenizer.pad_token_id] * padding_length
attention_mask = attention_mask + [0] * padding_length
labels = labels + [-100] * padding_length
ids_cmp_mask = ids_cmp_mask + [False] * padding_length
ids_gen_mask = ids_gen_mask + [False] * padding_length
input_ids = torch.tensor(input_ids, dtype=torch.long)
attention_mask = torch.tensor(attention_mask, dtype=torch.long)
labels = torch.tensor(labels, dtype=torch.long)
ids_cmp_mask = torch.tensor(ids_cmp_mask, dtype=torch.bool)
ids_gen_mask = torch.tensor(ids_gen_mask, dtype=torch.bool)
embeds_cmp_mask = torch.tensor(embeds_cmp_mask) if embeds_cmp_mask is not None else None
embeds_gen_mask = torch.tensor(embeds_gen_mask) if embeds_gen_mask is not None else None
boi_idx = torch.where(input_ids == boi_token_id)[0].tolist()
eoi_idx = torch.where(input_ids == eoi_token_id)[0].tolist()
ids_cmp_mask[boi_idx[0] + 1:eoi_idx[0]] = True
for i in range(num_image_given):
ids_cmp_mask[boi_idx[i + 1] + 1:eoi_idx[i + 1]] = True
ids_gen_mask[boi_idx[-1] + 1:eoi_idx[-1]] = True
labels[boi_idx[-1] + 1:eoi_idx[-1] + 1] = -100
ret = {
'input_ids': input_ids,
'attention_mask': attention_mask,
'labels': labels,
'ids_gen_mask': ids_gen_mask,
'ids_cmp_mask': ids_cmp_mask,
'embeds_gen_mask': embeds_gen_mask,
'embeds_cmp_mask': embeds_cmp_mask,
'images': images,
'text': input_text,
}
ret.update(image_data)
return ret
def build_long_story_datapipe(data_dir,
image_dir,
tokenizer=None,
story_len=30,
max_length=77,
batch_size=None,
min_resolution=180,
image_transform=None,
sd_image_transform=None,
instruction_prompt='{instruction}',
turn_sep='\n',
system_message='',
min_aspect_ratio=0.666,
num_img_in_tokens=64,
num_img_out_tokens=64,
cycle_count=None):
decode_partial = functools.partial(decode_long_story_data,
image_dir=image_dir,
tokenizer=tokenizer,
story_len=story_len,
image_transform=image_transform,
sd_image_transform=sd_image_transform,
max_length=max_length,
instruction_prompt=instruction_prompt,
turn_sep=turn_sep,
system_message=system_message,
min_resolution=min_resolution,
min_aspect_ratio=min_aspect_ratio,
num_img_in_tokens=num_img_in_tokens,
num_img_out_tokens=num_img_out_tokens)
filter_partial = functools.partial(filter_data_with_image_ids)
if isinstance(data_dir, str):
data_dir = list(braceexpand(data_dir))
datapipe = dp.iter.FileLister(root=data_dir, masks='*.jsonl', recursive=True)
datapipe = datapipe.shuffle()
datapipe = datapipe.cycle(count=cycle_count)
datapipe = datapipe.shuffle()
# datapipe = dp.iter.FileLister(root=data_dir, masks='0000000.tar', recursive=True)
datapipe = datapipe.sharding_filter()
# datapipe = datapipe.sharding_round_robin_dispatch(SHARDING_PRIORITIES.MULTIPROCESSING)
datapipe = datapipe.open_files(mode='r')
datapipe = datapipe.parse_jsonl_files()
datapipe = datapipe.map(decode_partial)
datapipe = datapipe.filter(filter_partial)
# datapipe = datapipe.shuffle(buffer_size=1024)
if batch_size is not None:
datapipe = datapipe.batch(batch_size)
datapipe = datapipe.collate(single_turn_edit_collate)
return datapipe
def build_multi_datapipes(datapipes, tokenizer=None, image_transform=None, sd_image_transform=None,
sample_weights=None):
# assert concat_type in ['concat', 'mux_longest', 'sample']
if sample_weights is None:
sample_weights = [1] * len(datapipes)
else:
assert len(sample_weights) == len(datapipes)
datapipes = [
hydra.utils.instantiate(datapipe, tokenizer=tokenizer, image_transform=image_transform,
sd_image_transform=sd_image_transform) for datapipe in datapipes
]
datasets_to_weights_dict = {}
for dataset, sample_weight in zip(datapipes, sample_weights):
datasets_to_weights_dict[dataset] = sample_weight
datapipe = dp.iter.SampleMultiplexer(datasets_to_weights_dict)
return datapipe
|