File size: 12,964 Bytes
674d663
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
# flake8: noqa
import hydra

import pyrootutils
import os
import torch
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import ProjectConfiguration

from tqdm.auto import tqdm
from omegaconf import OmegaConf
from omegaconf.dictconfig import DictConfig
import argparse
from flask import Flask, request
from typing import List, Union
import json
from typing import Optional
import transformers
from dataclasses import dataclass, field, asdict, is_dataclass
from torchdata.dataloader2 import DataLoader2, MultiProcessingReadingService, DistributedReadingService, \
    SequentialReadingService
import logging

pyrootutils.setup_root(__file__, indicator='.project-root', pythonpath=True)
from src.train.schedular import get_scheduler
from src.train.dist_utils import all_gather

# logger = get_logger(__name__, log_level='info')
log_format = '%(asctime)s - %(name)s - %(levelname)s - %(message)s'
logging.basicConfig(level=logging.INFO, format=log_format)

logger = logging.getLogger(__name__)
os.environ["WANDB_MODE"] = "offline"


@dataclass
class ConfigPathArguments:
    image_transform: Optional[str] = field(default=None, metadata={"help": "config path of image transform"})
    tokenizer: Optional[str] = field(default=None,
                                     metadata={"help": "config path of tokenizer used to initialize tokenizer"})
    # model: Optional[str] = field(default=None, metadata={"help": "config path of llm"})
    visual_encoder: Optional[str] = field(default=None, metadata={"help": "config path of visual encoder"})
    text_encoder: Optional[str] = field(default=None, metadata={"help": "config path of visual encoder"})
    discrete_model: Optional[str] = field(default=None, metadata={"help": "config path of discrete model"})
    train_dataset: Optional[str] = field(default=None, metadata={"help": "config path of training dataset"})


@dataclass
class TrainingArguments:
    output_dir: str = field(
        metadata={"help": "The output directory where the model predictions and checkpoints will be written."}, )
    resume_from_checkpoint: Optional[str] = field(
        default=None, metadata={"help": "The path to a folder with a valid checkpoint for your model."})
    resume_steps: Optional[int] = field(default=None, metadata={"help": "The training sterps of saved checkpoint"})
    learning_rate: float = field(default=5e-5, metadata={"help": "The initial learning rate for AdamW."})
    weight_decay: float = field(default=0.0, metadata={"help": "Weight decay for AdamW if we apply some."})
    adam_beta1: float = field(default=0.9, metadata={"help": "Beta1 for AdamW optimizer"})
    adam_beta2: float = field(default=0.999, metadata={"help": "Beta2 for AdamW optimizer"})
    adam_epsilon: float = field(default=1e-8, metadata={"help": "Epsilon for AdamW optimizer."})
    max_grad_norm: float = field(default=1.0, metadata={"help": "Max gradient norm."})
    gradient_accumulation_steps: int = field(
        default=1, metadata={"help": "Number of updates steps to accumulate before performing a backward/update pass."})
    mixed_precision: Optional[str] = field(
        default='no',
        metadata={
            "help":
                "Whether to use mixed precision. \
                    Choose between fp16 and bf16 (bfloat16). \
                        Bf16 requires PyTorch >=1.10.and an Nvidia Ampere GPU."
        })
    num_train_epochs: int = field(default=3, metadata={"help": "Total number of training epochs to perform."})
    max_steps: int = field(default=-1, metadata={"help": "Total number of training steps to perform. "})
    save_steps: int = field(default=10000, metadata={"help": "Number of updates steps before two checkpoint saves."})
    lr_scheduler_type: str = field(default="cosine", metadata={"help": "The scheduler type to use."})
    warmup_steps: int = field(default=0, metadata={"help": "Linear warmup over warmup_steps."})
    min_lr_ratio: float = field(default=0.01, metadata={"help": "Minimal learning rate ratio."})
    dataloader_num_workers: int = field(default=8, metadata={"help": "The number of workers to use for data loading."})
    project_name: str = field(default="DiscreteLearning", metadata={"help": "The name of experiment"})
    expr_name: str = field(default="", metadata={"help": "The name of experiment"})


def build_dataloader(dataset_cfg, image_transform, tokenizer, dataloader_num_workers=4):
    dataset = hydra.utils.instantiate(dataset_cfg, image_transform=image_transform, tokenizer=tokenizer)
    mp_service = MultiProcessingReadingService(num_workers=dataloader_num_workers)
    dist_service = DistributedReadingService()
    reading_service = SequentialReadingService(dist_service, mp_service)
    dataloader = DataLoader2(dataset, reading_service=reading_service)
    return dataloader


def get_metric(output):
    metric = {}
    for key, value in output.items():
        if 'loss' in key:
            metric[key] = value.item()
    return metric


def get_code_usage(indices):
    indices_list = all_gather(indices)
    indices = torch.cat(indices_list, dim=0)
    code_usage = indices.unique().numel()
    return code_usage


def merge_config(**kwargs):
    config = {}
    for key, value in kwargs.items():
        if isinstance(value, argparse.Namespace):
            config[key] = vars(value)
        elif isinstance(value, DictConfig):
            config[key] = OmegaConf.to_object(value)
        elif is_dataclass(value):
            config[key] = asdict(value)
        elif isinstance(value, dict):
            config[key] = value
        else:
            logger.error(f'key: {key}, value: {value} will not be merged.')
    return config


def trainable_params(model):
    count = 0
    for name, param in model.named_parameters():
        count += param.numel()
    return count


def train():
    parser = transformers.HfArgumentParser((ConfigPathArguments, TrainingArguments))
    cfg_path, args = parser.parse_args_into_dataclasses()

    project_config = ProjectConfiguration(project_dir=args.output_dir,
                                          logging_dir=os.path.join(args.output_dir, 'logs'))

    accelerator = Accelerator(
        mixed_precision=args.mixed_precision,
        log_with=['tensorboard', 'wandb'],
        project_config=project_config,
        gradient_accumulation_steps=args.gradient_accumulation_steps,
        step_scheduler_with_optimizer=False,
    )
    logger.info('Init accelerator done.')

    os.makedirs(args.output_dir, exist_ok=True)

    visual_encoder_cfg = OmegaConf.load(cfg_path.visual_encoder)
    visual_encoder = hydra.utils.instantiate(visual_encoder_cfg)
    logger.info('Load visual encoder done.')

    discrete_model_cfg = OmegaConf.load(cfg_path.discrete_model)
    discrete_model = hydra.utils.instantiate(discrete_model_cfg)
    logger.info('Load discrete model done.')

    train_dataset_cfg = OmegaConf.load(cfg_path.train_dataset)

    if cfg_path.text_encoder is not None:
        text_encoder_cfg = OmegaConf.load(cfg_path.text_encoder)
        text_encoder = hydra.utils.instantiate(text_encoder_cfg)
    else:
        text_encoder_cfg = None
        text_encoder = None

    if cfg_path.image_transform is not None:
        image_transform_cfg = OmegaConf.load(cfg_path.image_transform)
        image_transform = hydra.utils.instantiate(image_transform_cfg)
    else:
        image_transform_cfg = None
        image_transform = None

    if cfg_path.tokenizer is not None:
        tokenizer_cfg = OmegaConf.load(cfg_path.tokenizer)
        tokenizer = hydra.utils.instantiate(tokenizer_cfg)
    else:
        tokenizer_cfg = None
        tokenizer = None

    weight_dtype = torch.float32
    if accelerator.mixed_precision == "fp16":
        weight_dtype = torch.float16
    elif accelerator.mixed_precision == "bf16":
        weight_dtype = torch.bfloat16

    visual_encoder.to(accelerator.device, dtype=weight_dtype)
    logger.info('Freeze visual encoder...')
    visual_encoder.requires_grad_(False)
    if text_encoder is not None:
        logger.info('Freeze text encoder...')
        text_encoder.requires_grad_(False)
        text_encoder.to(accelerator.device, dtype=weight_dtype)
    discrete_model.to(accelerator.device, dtype=weight_dtype)

    discrete_model = accelerator.prepare(discrete_model)
    optimizer = torch.optim.AdamW(discrete_model.parameters(),
                                  lr=args.learning_rate,
                                  betas=[args.adam_beta1, args.adam_beta2],
                                  eps=args.adam_epsilon,
                                  weight_decay=args.weight_decay)
    logger.info('Init optimizer done.')
    scheduler = get_scheduler(name=args.lr_scheduler_type,
                              optimizer=optimizer,
                              num_warmup_steps=args.warmup_steps,
                              num_training_steps=args.max_steps,
                              min_lr_ratio=args.min_lr_ratio)
    # accelerator.register_for_checkpointing(scheduler)

    optimizer, scheduler = accelerator.prepare(optimizer, scheduler)
    logger.info('Prepare accelerator done.')

    config_record = merge_config(discrete_model=discrete_model_cfg,
                                 visual_encoder=visual_encoder_cfg,
                                 text_encoder=text_encoder_cfg,
                                 image_transform=image_transform_cfg,
                                 tokenizer=tokenizer_cfg,
                                 train_dataset=train_dataset_cfg,
                                 train_args=args)
    accelerator.init_trackers(project_name=args.project_name,
                              init_kwargs={"wandb": {
                                  "config": config_record,
                                  "name": args.expr_name,
                                  "dir": args.output_dir
                              }})
    if args.resume_from_checkpoint is not None:
        logger.info(f'Load checkpoint from {args.resume_from_checkpoint}')
        accelerator.load_state(args.resume_from_checkpoint)

    num_params = trainable_params(discrete_model)
    logger.info("***** Running training *****")
    logger.info(f"  Total optimization steps = {args.max_steps}")
    logger.info(f"  Total trainable params = {num_params}")
    # Only show the progress bar once on each machine.
    progress_bar = tqdm(range(args.max_steps), disable=not accelerator.is_main_process)
    progress_bar.set_description("Steps")
    global_step = 0
    if args.resume_steps is not None:
        global_step = args.resume_steps
        progress_bar.update(args.resume_steps)

    train_dataloader = build_dataloader(dataset_cfg=train_dataset_cfg,
                                        image_transform=image_transform,
                                        tokenizer=tokenizer,
                                        dataloader_num_workers=args.dataloader_num_workers)
    for epoch in range(args.num_train_epochs):
        discrete_model.train()
        logger.info('Start new epoch')

        for step, batch in enumerate(train_dataloader):
            with accelerator.accumulate(discrete_model):
                with torch.no_grad():
                    image_embeds = visual_encoder(batch['images'].to(accelerator.device, dtype=weight_dtype))
                    if text_encoder is not None:
                        text_embeds = text_encoder(batch['text_input_ids'].to(accelerator.device))
                    else:
                        text_embeds = None

                output = discrete_model(image_embeds=image_embeds, text_embeds=text_embeds)

                loss = output['total_loss']
                accelerator.backward(loss)
                if accelerator.sync_gradients:
                    accelerator.clip_grad_norm_(discrete_model.parameters(), max_norm=args.max_grad_norm)
                optimizer.step()
                scheduler.step()
                optimizer.zero_grad()

            if accelerator.sync_gradients:
                progress_bar.update(1)
                global_step += 1

                if global_step % args.save_steps == 0:
                    save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}")
                    accelerator.save_state(save_path)

            metric = get_metric(output)
            metric['lr'] = optimizer.param_groups[0]['lr']
            metric['code_usage'] = get_code_usage(output['indices'])
            metric = {key: (format(value, ".6f") if isinstance(value, float) else value) for key, value in
                      metric.items()}
            accelerator.log(metric, step=global_step)
            if accelerator.is_main_process:
                tqdm.write(str(metric))
            # print(metric)
            if global_step >= args.max_steps:
                break

    accelerator.end_training()


if __name__ == '__main__':
    train()