Spaces:
Runtime error
Runtime error
File size: 9,925 Bytes
674d663 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 |
# flake8: noqa
import hydra
from omegaconf import OmegaConf
import torch
import os
import re
import pyrootutils
from PIL import Image, ImageDraw, ImageFont
import json
from diffusers import AutoencoderKL, DDPMScheduler, UNet2DConditionModel, EulerDiscreteScheduler
pyrootutils.setup_root(__file__, indicator='.project-root', pythonpath=True)
BOI_TOKEN = '<img>'
EOI_TOKEN = '</img>'
IMG_TOKEN = '<img_{:05d}>'
device = 'cuda:0'
dtype = torch.float16
dtype_str = 'fp16'
num_img_in_tokens = 64
num_img_out_tokens = 64
instruction_prompt = '{instruction}'
tokenizer_cfg_path = 'configs/tokenizer/clm_llama_tokenizer.yaml'
image_transform_cfg_path = 'configs/processer/qwen_448_transform.yaml'
visual_encoder_cfg_path = 'configs/visual_tokenizer/qwen_vitg_448.yaml'
llm_cfg_path = 'configs/clm_models/llama2chat7b_lora.yaml'
agent_cfg_path = 'configs/clm_models/agent_7b_sft.yaml'
adapter_cfg_path = 'configs/detokenizer/detokenizer_sdxl_qwen_vit_adapted.yaml'
discrete_model_cfg_path = 'configs/discrete_model/discrete_identity.yaml'
diffusion_model_path = 'pretrained/stable-diffusion-xl-base-1.0'
save_dir = "output"
tokenizer_cfg = OmegaConf.load(tokenizer_cfg_path)
tokenizer = hydra.utils.instantiate(tokenizer_cfg)
image_transform_cfg = OmegaConf.load(image_transform_cfg_path)
image_transform = hydra.utils.instantiate(image_transform_cfg)
visual_encoder_cfg = OmegaConf.load(visual_encoder_cfg_path)
visual_encoder = hydra.utils.instantiate(visual_encoder_cfg)
visual_encoder.eval().to(device, dtype=dtype)
print('Init visual encoder done')
llm_cfg = OmegaConf.load(llm_cfg_path)
llm = hydra.utils.instantiate(llm_cfg, torch_dtype=dtype_str)
print('Init llm done.')
agent_model_cfg = OmegaConf.load(agent_cfg_path)
agent_model = hydra.utils.instantiate(agent_model_cfg, llm=llm)
agent_model.eval().to(device, dtype=dtype)
print('Init agent model Done')
noise_scheduler = EulerDiscreteScheduler.from_pretrained(diffusion_model_path, subfolder="scheduler")
print('init vae')
vae = AutoencoderKL.from_pretrained(diffusion_model_path, subfolder="vae").to(device, dtype=dtype)
print('init unet')
unet = UNet2DConditionModel.from_pretrained(diffusion_model_path, subfolder="unet").to(device, dtype=dtype)
adapter_cfg = OmegaConf.load(adapter_cfg_path)
adapter = hydra.utils.instantiate(adapter_cfg, unet=unet).to(device, dtype=dtype).eval()
print('Init adapter done')
discrete_model_cfg = OmegaConf.load(discrete_model_cfg_path)
discrete_model = hydra.utils.instantiate(discrete_model_cfg).to(device).eval()
print('Init discrete model done')
adapter.init_pipe(vae=vae,
scheduler=noise_scheduler,
visual_encoder=visual_encoder,
image_transform=image_transform,
discrete_model=discrete_model,
dtype=dtype,
device=device)
print('Init adapter pipe done')
boi_token_id = tokenizer.encode(BOI_TOKEN, add_special_tokens=False)[0]
eoi_token_id = tokenizer.encode(EOI_TOKEN, add_special_tokens=False)[0]
def read_jsonl_to_dict(filename):
data = []
with open(filename, 'r') as file:
for line in file:
# Each line is a valid JSON object
json_object = json.loads(line)
data.append(json_object)
return data
# data
filename = 'data/json/val.jsonl'
image_root = 'data/image/george_full'
data = read_jsonl_to_dict(filename)
image_paths = [
os.path.join(image_root, d['images'][0]) for d in data
]
questions = [
d['captions'][0] for d in data
]
# texts = [
# d['captions'][1:] for d in data
# ]
def add_subtitle(original_image, text):
# Calculate the size of the new image
text_height = 80 # Height of the black bar for the text
new_image_size = (original_image.width, original_image.height + text_height)
# Create a new image with a black background
new_image = Image.new("RGB", new_image_size, "black")
# Paste the original image onto the new image
new_image.paste(original_image, (0, 0))
# Prepare the new image for drawing
draw = ImageDraw.Draw(new_image)
# Specify the font size and font path
font_size = 14 # Adjust font size as needed
# font = ImageFont.truetype(font_path, font_size)
# Manually split the text into two lines
line1, line2 = text[:len(text) // 2], text[len(text) // 2:]
# Update the position for the first line of text to ensure both lines are centered vertically
text_position_line1 = (10, original_image.height + (text_height - font_size) // 2)
# Define the text color
text_color = "white"
# Add the first line of text to the new image
draw.text(text_position_line1, line1, fill=text_color)
# Adjust the position for the second line of text, based on the height of the first line
text_position_line2 = (10, text_position_line1[1] + font_size)
# Add the second line of text to the new image
draw.text(text_position_line2, line2, fill=text_color)
return new_image
for j in range(len(image_paths)):
image_path = image_paths[j]
question = questions[j]
image = Image.open(image_path).convert('RGB')
save_folder = '{}/val_{}'.format(save_dir, j)
os.makedirs(save_folder, exist_ok=True)
init_image = add_subtitle(image, question)
save_path = os.path.join(save_folder, '000start_image.jpg')
init_image.save(save_path)
agent_model.llm.base_model.model.use_kv_cache_head = False
image_tensor = image_transform(image).unsqueeze(0).to(device, dtype=dtype)
image_tokens = BOI_TOKEN + ''.join([IMG_TOKEN.format(int(item)) for item in range(num_img_in_tokens)]) + EOI_TOKEN
prompt = instruction_prompt.format_map({'instruction': question + image_tokens})
print(prompt)
print('*' * 20)
input_ids = tokenizer.encode(prompt, add_special_tokens=False)
input_ids = [tokenizer.bos_token_id] + input_ids
boi_idx = input_ids.index(boi_token_id)
eoi_idx = input_ids.index(eoi_token_id)
input_ids = torch.tensor(input_ids).to(device, dtype=torch.long).unsqueeze(0)
ids_cmp_mask = torch.zeros_like(input_ids, dtype=torch.bool)
ids_cmp_mask[0, boi_idx + 1:eoi_idx] = True
embeds_cmp_mask = torch.tensor([True]).to(device, dtype=torch.bool)
with torch.no_grad():
image_embeds = visual_encoder(image_tensor)
output = agent_model.generate(tokenizer=tokenizer,
input_ids=input_ids,
image_embeds=image_embeds,
embeds_cmp_mask=embeds_cmp_mask,
ids_cmp_mask=ids_cmp_mask,
max_new_tokens=500,
num_img_gen_tokens=num_img_out_tokens)
text = re.sub(r'\s*<[^>]*>\s*', ' ', output['text']).strip()
with open("{}/text.txt".format(save_folder), 'a+') as text_file:
text_file.write(text + '\n')
with open("{}/token.txt".format(save_folder), 'a+') as token_file:
token_file.write("context token: {}\n".format(input_ids.shape))
print(output['text'])
print('*' * 20)
story_len = 25
window_size = 8
text_id = 1
while output['has_img_output'] and image_embeds.shape[0] < story_len:
image_embeds_gen = output['img_gen_feat']
images_gen = adapter.generate(image_embeds=output['img_gen_feat'], num_inference_steps=50)
name = '{:02d}.jpg'.format(text_id)
save_path = os.path.join(save_folder, name)
# Open the generated image
original_image = images_gen[0]
ori_path = os.path.join(save_folder, 'ori_{:02d}.jpg'.format(text_id))
original_image.save(ori_path)
new_image = add_subtitle(original_image, text)
# Save the modified image
new_image.save(save_path)
image_embeds = torch.cat((image_embeds, image_embeds_gen), dim=0)
# image_embeds = torch.cat((image_embeds, image_embeds_gen), dim=0)
if text_id >= story_len - 1:
break
prompt = prompt + text + image_tokens
text_id += 1
input_ids = tokenizer.encode(prompt, add_special_tokens=False)
while image_embeds.shape[0] > window_size:
eoi_prompt_idx = prompt.index(EOI_TOKEN)
prompt = prompt[eoi_prompt_idx + len(EOI_TOKEN) + len('[INST]'):]
image_embeds = image_embeds[1:]
input_ids = tokenizer.encode(prompt, add_special_tokens=False)
print(prompt)
print('*' * 20)
input_ids = [tokenizer.bos_token_id] + input_ids
boi_idx = torch.where(torch.tensor(input_ids) == boi_token_id)[0].tolist()
eoi_idx = torch.where(torch.tensor(input_ids) == eoi_token_id)[0].tolist()
input_ids = torch.tensor(input_ids).to(device, dtype=torch.long).unsqueeze(0)
ids_cmp_mask = torch.zeros_like(input_ids, dtype=torch.bool)
for i in range(image_embeds.shape[0]):
ids_cmp_mask[0, boi_idx[i] + 1:eoi_idx[i]] = True
embeds_cmp_mask = torch.tensor([True] * image_embeds.shape[0]).to(device, dtype=torch.bool)
output = agent_model.generate(tokenizer=tokenizer,
input_ids=input_ids,
image_embeds=image_embeds,
embeds_cmp_mask=embeds_cmp_mask,
ids_cmp_mask=ids_cmp_mask,
max_new_tokens=500,
num_img_gen_tokens=num_img_out_tokens)
text = re.sub(r'\s*<[^>]*>\s*', ' ', output['text']).strip()
print(output['text'])
print('*' * 20)
with open("{}/text.txt".format(save_folder), 'a+') as text_file:
text_file.write(text + '\n')
with open("{}/token.txt".format(save_folder), 'a+') as token_file:
token_file.write("context token: {}\n".format(input_ids.shape))
|