Yw22's picture
init demo
d711508
raw
history blame
40.9 kB
# Copyright 2023-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# The implementation is based on "Parameter-Efficient Orthogonal Finetuning
# via Butterfly Factorization" (https://arxiv.org/abs/2311.06243) in ICLR 2024.
from __future__ import annotations
import math
import os
import warnings
from contextlib import contextmanager
from typing import Any, Optional, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Function
from torch.utils.cpp_extension import load
from peft.tuners.tuners_utils import BaseTunerLayer, check_adapters_to_merge
_FBD_CUDA = None
# this function is a 1:1 copy from accelerate
@contextmanager
def patch_environment(**kwargs):
"""
A context manager that will add each keyword argument passed to `os.environ` and remove them when exiting.
Will convert the values in `kwargs` to strings and upper-case all the keys.
Example:
```python
>>> import os
>>> from accelerate.utils import patch_environment
>>> with patch_environment(FOO="bar"):
... print(os.environ["FOO"]) # prints "bar"
>>> print(os.environ["FOO"]) # raises KeyError
```
"""
existing_vars = {}
for key, value in kwargs.items():
key = key.upper()
if key in os.environ:
existing_vars[key] = os.environ[key]
os.environ[key] = str(value)
yield
for key in kwargs:
key = key.upper()
if key in existing_vars:
# restore previous value
os.environ[key] = existing_vars[key]
else:
os.environ.pop(key, None)
def get_fbd_cuda():
global _FBD_CUDA
if _FBD_CUDA is not None:
return _FBD_CUDA
curr_dir = os.path.dirname(__file__)
# need ninja to build the extension
try:
with patch_environment(CC="gcc", CXX="gcc"):
fbd_cuda = load(
name="fbd_cuda",
sources=[f"{curr_dir}/fbd/fbd_cuda.cpp", f"{curr_dir}/fbd/fbd_cuda_kernel.cu"],
verbose=True,
# build_directory='/tmp/' # for debugging
)
# extra_cuda_cflags = ['-std=c++14', '-ccbin=$$(which gcc-7)']) # cuda10.2 is not compatible with gcc9. Specify gcc 7
import fbd_cuda
except Exception as e:
warnings.warn(f"Failed to load the CUDA extension: {e}, check if ninja is available.")
warnings.warn("Setting boft_n_butterfly_factor to 1 to speed up the finetuning process.")
fbd_cuda = None
_FBD_CUDA = fbd_cuda
return _FBD_CUDA
class FastBlockDiag(Function):
"""
Implements a custom autograd Function for a fast block diagonal operation using CUDA.
This function is optimized for 4D tensors where the last two dimensions are equal, representing block diagonal
matrices for efficient computation on CUDA devices.
"""
@staticmethod
def forward(ctx, input):
"""
The forward method for FastBlockDiag.
Computes the block diagonal operation on the input tensor using a CUDA-optimized function. This method assumes
that the input is a 4D tensor where the last two dimensions are equal, which represent the blocks to be
diagonalized.
Parameters:
ctx: A context object that can be used to stash information for backward computation.
input (Tensor): The input tensor of shape (N, D, H, H), where `N` is the batch size,
`D` represents one additional dimension (In BOFT, the number of BOFT blocks), and `H` is the
size of the square blocks along the last two dimensions (In BOFT, the block size).
Returns:
Tensor: The resulting tensor after applying the block diagonal operation,
will have the shape (N, DxH, DxH).
"""
output = get_fbd_cuda().forward(input)[0]
ctx.save_for_backward(input)
return output
@staticmethod
def backward(ctx, grad_output):
(input,) = ctx.saved_tensors
grad_input = get_fbd_cuda().backward(grad_output, input)[0]
return grad_input
class MultiplicativeDropoutLayer(nn.Module):
"""
Implements the multiplicative dropout layer for BOFT.
"""
def __init__(self, p=0.0):
"""
Initializes the multiplicative dropout layer.
Parameters:
p (float): The probability of dropping out a block. Defaults to 0.0.
"""
super().__init__()
self.p = p
def forward(self, x):
"""
Applies multiplicative dropout to the input tensor.
Parameters:
x (Tensor): The input tensor of shape (N, D, H, H), where `N` is the batch size, `D` represents
one additional dimension (In BOFT, the number of BOFT blocks), and `H` is the size of the square
blocks along the last two dimensions (In BOFT, the block size).
"""
if self.training:
# Ensure the last two dimensions are the same
if x.shape[-1] != x.shape[-2]:
raise ValueError("The last two dimensions of input should be the same!")
N, D, H, _ = x.shape
# Randomly select one from N
n_random = torch.randint(0, N, (1,)).item()
# Create a mask with 1s for matrices to be replaced with identity and 0s otherwise
num_to_replace = int(self.p * D)
num_zeros = D - num_to_replace
# Generate a flat tensor with desired number of 1s and 0s
mask = torch.cat([torch.ones(num_to_replace, device=x.device), torch.zeros(num_zeros, device=x.device)])
# Shuffle and reshape the mask
mask = mask[torch.randperm(D)].view(1, D, 1, 1)
full_mask = torch.zeros(N, D, 1, 1, device=x.device)
full_mask[n_random] = mask
# Use the mask to combine original matrices and identity matrices
eye_matrix = torch.eye(H, device=x.device).repeat(N, D, 1, 1)
x = (1 - full_mask) * x + full_mask * eye_matrix
return x
class BOFTLayer(BaseTunerLayer):
"""
Implements the BOFT layer.
"""
# All names of layers that may contain (trainable) adapter weights
adapter_layer_names = ("boft_R", "boft_s")
# All names of other parameters that may contain adapter-related parameters
other_param_names = ("boft_block_size", "boft_block_num", "boft_dropout")
def __init__(self, base_layer: nn.Module, **kwargs) -> None:
"""
Initializes the BOFT layer.
Note, currently only support linear layer and convolutional layer, with further support for other layers to be
added soon.
Parameters:
base_layer: the pretrained model layer
"""
self.base_layer = base_layer
self.boft_block_size = {}
self.boft_block_num = {}
self.boft_dropout = nn.ModuleDict({})
self.boft_R = nn.ParameterDict({})
self.boft_s = nn.ParameterDict({})
# Mark the weight as unmerged
self._disable_adapters = False
self.merged_adapters = []
self.kwargs = kwargs
base_layer = self.get_base_layer()
if isinstance(base_layer, nn.Linear):
in_features, out_features = base_layer.in_features, base_layer.out_features
elif isinstance(base_layer, nn.Conv2d):
in_features, out_features = base_layer.in_channels, base_layer.out_channels
else:
raise ValueError(f"Unsupported layer type {type(base_layer)}")
self.in_features = in_features
self.out_features = out_features
def set_scale(self, adapter, scale):
if adapter not in self.scaling:
# Ignore the case where the adapter is not in the layer
return
warnings.warn("Scaling operation for BOFT not supported! Automatically set scale to 1.")
def scale_layer(self, scale: float) -> None:
if scale == 1:
return
for active_adapter in self.active_adapters:
if active_adapter not in self.boft_R.keys():
continue
warnings.warn("Scaling operation for BOFT not supported! Automatically set scale to 1.")
def unscale_layer(self, scale=None) -> None:
for active_adapter in self.active_adapters:
if active_adapter not in self.boft_R.keys():
continue
warnings.warn("Unscaling operation for BOFT not supported! Keeping scale to 1.")
def update_layer(
self, adapter_name, boft_block_size, boft_block_num, boft_n_butterfly_factor, boft_dropout, init_weights
):
"""
Update the linear layer with trainable BOFT weights. Override for other layer types.
"""
# to be consistent with the paper notation
boft_n_butterfly_factor = boft_n_butterfly_factor - 1
if boft_n_butterfly_factor < 0:
raise ValueError(
f"You can only specify boft_n_butterfly_factor {boft_n_butterfly_factor+1} to be a positive integer number."
)
# Initialize the MultiplicativeDropoutLayer for boft_dropout > 0.0.
if boft_dropout > 0.0:
boft_dropout_layer = MultiplicativeDropoutLayer(p=boft_dropout)
else:
boft_dropout_layer = nn.Identity()
self.boft_dropout.update(nn.ModuleDict({adapter_name: boft_dropout_layer}))
if boft_block_size == 0 and boft_block_num != 0:
if self.in_features % boft_block_num != 0:
raise ValueError(
f"in_features ({self.in_features}) must be divisible by boft_block_num ({boft_block_num})!"
)
if boft_n_butterfly_factor != 0:
if boft_n_butterfly_factor > int(math.log2(boft_block_num)):
raise ValueError(
f"Invalid combination of boft_n_butterfly_factor ({boft_n_butterfly_factor+1}) and boft_block_num ({boft_block_num})!"
)
if boft_block_num % (2**boft_n_butterfly_factor) != 0:
raise ValueError(
f"boft_block_num ({boft_block_num}) must be a multiple of 2 raised to the power of boft_n_butterfly_factor ({boft_n_butterfly_factor+1})!"
)
boft_block_size = int(self.in_features // boft_block_num)
elif boft_block_size != 0 and boft_block_num == 0:
if self.in_features % boft_block_size != 0:
raise ValueError(
f"in_features ({self.in_features}) must be divisible by boft_block_size ({boft_block_size})!"
)
if boft_n_butterfly_factor != 0:
if self.in_features < (boft_block_size * (2**boft_n_butterfly_factor)):
raise ValueError(
f"Invalid combination of in_features ({self.in_features}), boft_n_butterfly_factor ({boft_n_butterfly_factor+1}) and boft_block_size ({boft_block_size})!"
)
if self.in_features % (boft_block_size * (2**boft_n_butterfly_factor)) != 0:
raise ValueError(
f"Invalid combination of in_features ({self.in_features}), boft_n_butterfly_factor ({boft_n_butterfly_factor+1}) and boft_block_size ({boft_block_size})!"
)
boft_block_num = int(self.in_features // boft_block_size)
else:
raise ValueError(
f"You can only specify either boft_block_size ({boft_block_size}) or boft_block_num ({boft_block_num}), but not both simultaneously or setting both"
"to be 0, because boft_block_size x boft_block_num != in_features."
)
# In OFT you can specify the number of blocks to be 1
if boft_n_butterfly_factor != 0:
if boft_block_num % 2 != 0:
raise ValueError(f"boft_block_num ({boft_block_num}) must be an even number!")
if boft_block_size % 2 != 0:
raise ValueError(f"boft_block_size ({boft_block_size}) must be an even number!")
# If there is no butterfly factor, then permutation matrix P will be an identity matrix.
P = torch.empty((boft_n_butterfly_factor + 1, self.in_features, self.in_features))
for i in range(boft_n_butterfly_factor + 1):
perm = self.block_butterfly_perm(
self.in_features, int(boft_block_num / (2 ** (i))), int(boft_block_size / 2), boft_n_butterfly_factor
)
perm_mat = self.perm2mat(perm)
P[i] = perm_mat
self.register_buffer("boft_P", P)
self.boft_R[adapter_name] = nn.Parameter(
torch.zeros(boft_n_butterfly_factor + 1, boft_block_num, boft_block_size, boft_block_size)
)
self.boft_s[adapter_name] = nn.Parameter(torch.ones(int(self.out_features), 1))
self.reset_boft_parameters(adapter_name, init_weights)
weight = getattr(self, "weight", None)
if weight is not None:
# the layer is already completely initialized, this is an update
if weight.dtype.is_floating_point or weight.dtype.is_complex:
self.to(weight.device, dtype=weight.dtype)
else:
self.to(weight.device)
# set the boft block size and number
self.boft_block_size[adapter_name] = boft_block_size
self.boft_block_num[adapter_name] = boft_block_num
self.set_adapter(self.active_adapters)
def reset_boft_parameters(self, adapter_name, init_weights):
"""
Reset the BOFT parameters.
"""
if init_weights is False:
nn.init.normal_(self.boft_R[adapter_name], mean=0.0, std=0.1)
nn.init.normal_(self.boft_s[adapter_name], mean=1.0, std=0.1)
return
if adapter_name in self.boft_R.keys():
if init_weights is True:
# initialize R to zero
nn.init.zeros_(self.boft_R[adapter_name])
nn.init.ones_(self.boft_s[adapter_name])
else:
raise ValueError(f"Unknown initialization {init_weights=}")
def perm2mat(self, indices):
"""
Convert permutation indices to permutation matrix.
Args:
indices: A list of indices representing the permutation.
"""
# Number of indices determines the size of the square matrix
n = len(indices)
# Initialize a matrix of zeros
perm_mat = torch.zeros((n, n))
# Set the 1s according to the indices
for i, idx in enumerate(indices):
perm_mat[i, idx] = 1
return perm_mat
def block_butterfly_perm(self, n, b, r=3, n_butterfly_factor=1):
"""
Define the permutation matrix for the block butterfly permutation.
Args:
n: size of the permutation matrix
b: desired number of blocks after multiplying with the permutation matrix
r: base block size of the block diagonal matrix, e.g. 2x2, 3x3, 5x5 etc.
"""
if n_butterfly_factor == 0:
return torch.arange(n)
if b * r * 2 > n:
raise ValueError("Invalid number of blocks!")
block_size = int(n // b)
indices = torch.arange(n)
def sort_block(b, r):
step = b / r
initial_order = torch.arange(b)
sorted_order = torch.empty(b, dtype=torch.long)
evens = torch.arange(0, step, 2)
odds = torch.arange(1, step, 2)
sorted_seq = torch.cat((evens, odds), dim=0)
for i, pos in enumerate(sorted_seq):
sorted_order[int(i * r) : int(i * r + r)] = initial_order[int(pos * r) : int(pos * r + r)]
return sorted_order
sorted_order = sort_block(block_size, r)
for i in range(0, n, block_size):
block_end = i + block_size
tmp_indices = indices[i:block_end]
indices[i:block_end] = tmp_indices[sorted_order]
return indices
def cayley_batch(self, data):
"""
Perform the Cayley parametrization on a batch of skew-symmetric matrices.
Args:
data: A batch of skew-symmetric matrices of shape (b, r, c).
"""
b, r, c = data.shape
# Ensure the input matrix is skew-symmetric
skew_mat = 0.5 * (data - data.transpose(1, 2))
id_mat = torch.eye(r, device=data.device).unsqueeze(0).expand(b, r, c)
# Perform the Cayley parametrization
Q = torch.linalg.solve(id_mat + skew_mat, id_mat - skew_mat, left=False)
return Q
class Linear(nn.Module, BOFTLayer):
"""
BOFT implemented in a dense layer.
"""
def __init__(
self,
base_layer,
adapter_name: str,
boft_block_size: int = 8,
boft_block_num: int = 0,
boft_n_butterfly_factor: int = 0,
boft_dropout: float = 0.1,
fan_in_fan_out: bool = False, # Set this to True if the layer to replace stores weight like (fan_in, fan_out)
init_weights: Union[bool, str] = True,
is_target_conv_1d_layer: bool = False,
**kwargs,
) -> None:
super().__init__()
BOFTLayer.__init__(self, base_layer, **kwargs)
self.fan_in_fan_out = fan_in_fan_out
self._active_adapter = adapter_name
# Attempt to load the CUDA extension during model initialization
if not get_fbd_cuda():
self.fbd_cuda_available = False
# If the CUDA extension is not available, set the butterfly factor to 1 to speed up the finetuning process
boft_n_butterfly_factor = 1
else:
self.fbd_cuda_available = True
self.update_layer(
adapter_name, boft_block_size, boft_block_num, boft_n_butterfly_factor, boft_dropout, init_weights
)
self.is_target_conv_1d_layer = is_target_conv_1d_layer
def merge(self, safe_merge: bool = False, adapter_names: Optional[list[str]] = None) -> None:
"""
Merge the active adapter weights into the base weights
Args:
safe_merge (`bool`, *optional*):
If True, the merge operation will be performed in a copy of the original weights and check for NaNs
before merging the weights. This is useful if you want to check if the merge operation will produce
NaNs. Defaults to `False`.
adapter_names (`List[str]`, *optional*):
The list of adapter names that should be merged. If None, all active adapters will be merged. Defaults
to `None`.
"""
adapter_names = check_adapters_to_merge(self, adapter_names)
if not adapter_names:
# no adapter to merge
return
for active_adapter in adapter_names:
if active_adapter in self.boft_R.keys():
base_layer = self.get_base_layer()
if safe_merge:
# Note that safe_merge will be slower than the normal merge
# because of the copy operation.
orig_weight = base_layer.weight.data.clone()
butterfly_oft_mat, boft_s = self.get_delta_weight(active_adapter)
orig_weight = torch.transpose(orig_weight, 0, 1)
orig_weight = torch.mm(butterfly_oft_mat, orig_weight)
orig_weight = torch.transpose(orig_weight, 0, 1)
orig_weight = orig_weight * boft_s
if not torch.isfinite(orig_weight).all():
raise ValueError(
f"NaNs detected in the merged weights. The adapter {active_adapter} seems to be broken"
)
self.base_layer.weight.data = orig_weight
else:
butterfly_oft_mat, boft_s = self.get_delta_weight(active_adapter)
orig_weight = base_layer.weight.data.clone()
orig_weight = torch.transpose(orig_weight, 0, 1)
orig_weight = torch.mm(butterfly_oft_mat, orig_weight)
orig_weight = torch.transpose(orig_weight, 0, 1)
orig_weight = orig_weight * boft_s
self.base_layer.weight.data = orig_weight
self.merged_adapters.append(active_adapter)
def unmerge(self) -> None:
"""
This method unmerges all merged adapter layers from the base weights.
"""
if not self.merged:
warnings.warn("Already unmerged. Nothing to do.")
return
while len(self.merged_adapters) > 0:
active_adapter = self.merged_adapters.pop()
if active_adapter in self.boft_R.keys():
butterfly_oft_mat, boft_s = self.get_delta_weight(active_adapter)
orig_weight = self.get_base_layer().weight.data.clone()
orig_weight = torch.transpose(orig_weight, 0, 1)
orig_weight = torch.mm(butterfly_oft_mat.t(), orig_weight)
orig_weight = torch.transpose(orig_weight, 0, 1)
self.get_base_layer().weight.data = orig_weight * (1 / boft_s)
def get_delta_weight(self, adapter) -> tuple[torch.Tensor, torch.Tensor]:
"""
Compute the delta weight for the given adapter.
Args:
adapter (str):
The name of the adapter for which the delta weight should be computed.
"""
boft_R = self.boft_R[adapter]
boft_s = self.boft_s[adapter]
N, D, H, _ = boft_R.shape
boft_R = boft_R.view(N * D, H, H)
orth_rotate_butterfly = self.cayley_batch(boft_R)
orth_rotate_butterfly = orth_rotate_butterfly.view(N, D, H, H)
if self.fbd_cuda_available:
block_diagonal_butterfly = FastBlockDiag.apply(orth_rotate_butterfly)
else:
orth_rotate_butterfly = orth_rotate_butterfly.squeeze(0)
block_diagonal_butterfly = torch.block_diag(*torch.unbind(orth_rotate_butterfly))
block_diagonal_butterfly = block_diagonal_butterfly.unsqueeze(0)
butterfly_oft_mat_batch = torch.bmm(block_diagonal_butterfly, self.boft_P.permute(0, 2, 1))
butterfly_oft_mat_batch = torch.bmm(self.boft_P, butterfly_oft_mat_batch)
butterfly_oft_mat = butterfly_oft_mat_batch[0]
for i in range(1, butterfly_oft_mat_batch.shape[0]):
butterfly_oft_mat = butterfly_oft_mat_batch[i] @ butterfly_oft_mat
return butterfly_oft_mat, boft_s
def forward(self, x: torch.Tensor, *args: Any, **kwargs: Any) -> torch.Tensor:
previous_dtype = x.dtype
if self.disable_adapters:
if self.merged:
self.unmerge()
result = self.base_layer(x, *args, **kwargs)
elif self.merged:
result = self.base_layer(x, *args, **kwargs)
else:
boft_rotation = torch.eye(self.in_features, device=x.device)
boft_scale = torch.ones((int(self.out_features), 1), device=x.device)
for active_adapter in self.active_adapters:
if active_adapter not in self.boft_R.keys():
continue
boft_R = self.boft_R[active_adapter]
boft_s = self.boft_s[active_adapter]
dropout = self.boft_dropout[active_adapter]
N, D, H, _ = boft_R.shape
boft_R = boft_R.view(N * D, H, H)
orth_rotate_butterfly = self.cayley_batch(boft_R)
orth_rotate_butterfly = orth_rotate_butterfly.view(N, D, H, H)
orth_rotate_butterfly = dropout(orth_rotate_butterfly)
if self.fbd_cuda_available:
block_diagonal_butterfly = FastBlockDiag.apply(orth_rotate_butterfly)
else:
orth_rotate_butterfly = orth_rotate_butterfly.squeeze(0)
block_diagonal_butterfly = torch.block_diag(*torch.unbind(orth_rotate_butterfly))
block_diagonal_butterfly = block_diagonal_butterfly.unsqueeze(0)
butterfly_oft_mat_batch = torch.bmm(block_diagonal_butterfly, self.boft_P.permute(0, 2, 1))
butterfly_oft_mat_batch = torch.bmm(self.boft_P, butterfly_oft_mat_batch)
butterfly_oft_mat = butterfly_oft_mat_batch[0]
for i in range(1, butterfly_oft_mat_batch.shape[0]):
butterfly_oft_mat = butterfly_oft_mat_batch[i] @ butterfly_oft_mat
boft_rotation = butterfly_oft_mat @ boft_rotation
boft_scale = boft_s * boft_scale
x = x.to(self.get_base_layer().weight.data.dtype)
orig_weight = self.get_base_layer().weight.data
orig_weight = torch.transpose(orig_weight, 0, 1)
rotated_weight = torch.mm(boft_rotation, orig_weight)
rotated_weight = torch.transpose(rotated_weight, 0, 1)
scaled_rotated_weight = rotated_weight * boft_scale
result = F.linear(input=x, weight=scaled_rotated_weight, bias=self.base_layer.bias)
result = result.to(previous_dtype)
return result
def __repr__(self) -> str:
rep = super().__repr__()
return "boft." + rep
class Conv2d(nn.Module, BOFTLayer):
"""
BOFT implemented in a Conv2d layer.
"""
def __init__(
self,
base_layer: nn.Module,
adapter_name: str,
boft_block_size: int = 8,
boft_block_num: int = 0,
boft_n_butterfly_factor: int = 0,
boft_dropout: float = 0.1,
init_weights: Union[bool, str] = True,
**kwargs,
) -> None:
super().__init__()
BOFTLayer.__init__(self, base_layer)
self._active_adapter = adapter_name
# Attempt to load the CUDA extension during model initialization
if not get_fbd_cuda():
self.fbd_cuda_available = False
# If the CUDA extension is not available, set the butterfly factor to 1 to speed up the finetuning process
boft_n_butterfly_factor = 1
else:
self.fbd_cuda_available = True
self.update_layer(
adapter_name, boft_block_size, boft_block_num, boft_n_butterfly_factor, boft_dropout, init_weights
)
def update_layer(
self, adapter_name, boft_block_size, boft_block_num, boft_n_butterfly_factor, boft_dropout, init_weights
):
"""
Update the conv2d layer with trainable BOFT weights.
"""
# to be consistent with the paper notation
boft_n_butterfly_factor = boft_n_butterfly_factor - 1
if boft_n_butterfly_factor < 0:
raise ValueError(
f"You can only specify boft_n_butterfly_factor {boft_n_butterfly_factor+1} to be a positive integer number."
)
# Initialize the MultiplicativeDropoutLayer for boft_dropout > 0.0.
if boft_dropout > 0.0:
boft_dropout_layer = MultiplicativeDropoutLayer(p=boft_dropout)
else:
boft_dropout_layer = nn.Identity()
self.boft_dropout.update(nn.ModuleDict({adapter_name: boft_dropout_layer}))
# layer information from the base layer
base_layer = self.get_base_layer()
conv_filter_dim = self.in_features * base_layer.kernel_size[0] * base_layer.kernel_size[0]
# Initialize the BOFT parameters.
if not (boft_block_size != 0) ^ (boft_block_num != 0):
raise ValueError(
f"You can only specify either boft_block_size ({boft_block_size}) or boft_block_num ({boft_block_num}), but not both simultaneously, because boft_block_size x boft_block_num != in_features."
)
if boft_block_size == 0 and boft_block_num != 0:
if conv_filter_dim % boft_block_num != 0:
raise ValueError(
f"Convolutional kernel dimension ({conv_filter_dim}) must be divisible by boft_block_num ({boft_block_num})!"
)
if boft_n_butterfly_factor != 0:
if boft_n_butterfly_factor > int(math.log2(boft_block_num)):
raise ValueError(
f"Invalid combination of boft_n_butterfly_factor ({boft_n_butterfly_factor+1}) and boft_block_num ({boft_block_num})!"
)
if boft_block_num % (2**boft_n_butterfly_factor) != 0:
raise ValueError(
f"boft_block_num ({boft_block_num}) must be a multiple of 2 raised to the power of boft_n_butterfly_factor ({boft_n_butterfly_factor+1})!"
)
boft_block_size = int(conv_filter_dim // boft_block_num)
elif boft_block_size != 0 and boft_block_num == 0:
if conv_filter_dim % boft_block_size != 0:
raise ValueError(
f"Convolutional kernel dimension ({conv_filter_dim}) must be divisible by boft_block_size ({boft_block_size})!"
)
if boft_n_butterfly_factor != 0:
if conv_filter_dim < (boft_block_size * (2**boft_n_butterfly_factor)):
raise ValueError(
f"Invalid combination of convolutional kernel dimension ({conv_filter_dim}), boft_n_butterfly_factor ({boft_n_butterfly_factor+1}) and boft_block_size ({boft_block_size})!"
)
if conv_filter_dim % (boft_block_size * (2**boft_n_butterfly_factor)) != 0:
raise ValueError(
f"Invalid combination of convolutional kernel dimension ({conv_filter_dim}), boft_n_butterfly_factor ({boft_n_butterfly_factor+1}) and boft_block_size ({boft_block_size})!"
)
boft_block_num = int(conv_filter_dim // boft_block_size)
else:
raise ValueError("Unknown error!")
# In OFT you can specify the number of blocks to be 1
if boft_n_butterfly_factor != 0:
if boft_block_num % 2 != 0:
raise ValueError(f"boft_block_num ({boft_block_num}) must be an even number!")
if boft_block_size % 2 != 0:
raise ValueError(f"boft_block_size ({boft_block_size}) must be an even number!")
# If there is no butterfly factor, then permutation matrix P will be an identity matrix.
P = torch.empty((boft_n_butterfly_factor + 1, conv_filter_dim, conv_filter_dim))
for i in range(boft_n_butterfly_factor + 1):
perm = self.block_butterfly_perm(
conv_filter_dim, int(boft_block_num / (2 ** (i))), int(boft_block_size / 2), boft_n_butterfly_factor
)
perm_mat = self.perm2mat(perm)
P[i] = perm_mat
self.register_buffer("boft_P", P)
self.boft_R[adapter_name] = nn.Parameter(
torch.zeros(boft_n_butterfly_factor + 1, boft_block_num, boft_block_size, boft_block_size)
)
self.boft_s[adapter_name] = nn.Parameter(torch.ones(1, int(self.out_features)))
self.reset_boft_parameters(adapter_name, init_weights)
weight = getattr(self, "weight", None)
if weight is not None:
# the layer is already completely initialized, this is an update
if weight.dtype.is_floating_point or weight.dtype.is_complex:
self.to(weight.device, dtype=weight.dtype)
else:
self.to(weight.device)
self.set_adapter(self.active_adapters)
# set the boft block size and number
self.boft_block_size[adapter_name] = boft_block_size
self.boft_block_num[adapter_name] = boft_block_num
def merge(self, safe_merge: bool = False, adapter_names: Optional[list[str]] = None) -> None:
"""
Merge the active adapter weights into the base weights
Args:
safe_merge (`bool`, *optional*):
If True, the merge operation will be performed in a copy of the original weights and check for NaNs
before merging the weights. This is useful if you want to check if the merge operation will produce
NaNs. Defaults to `False`.
adapter_names (`List[str]`, *optional*):
The list of adapter names that should be merged. If None, all active adapters will be merged. Defaults
to `None`.
"""
adapter_names = check_adapters_to_merge(self, adapter_names)
if not adapter_names:
# no adapter to merge
return
for active_adapter in adapter_names:
if active_adapter in self.boft_R.keys():
base_layer = self.get_base_layer()
if safe_merge:
# Note that safe_merge will be slower than the normal merge
# because of the copy operation.
orig_weight = base_layer.weight.data.clone()
butterfly_oft_mat, boft_s = self.get_delta_weight(active_adapter)
orig_weight = orig_weight.view(
self.in_features * base_layer.kernel_size[0] * base_layer.kernel_size[0], self.out_features
)
orig_weight = torch.mm(butterfly_oft_mat, orig_weight)
orig_weight = orig_weight * boft_s
orig_weight = orig_weight.view(
self.out_features, self.in_features, base_layer.kernel_size[0], base_layer.kernel_size[0]
)
self.base_layer.weight.data = orig_weight
else:
butterfly_oft_mat, boft_s = self.get_delta_weight(active_adapter)
orig_weight = base_layer.weight.data.clone()
orig_weight = orig_weight.view(
self.in_features * base_layer.kernel_size[0] * base_layer.kernel_size[0], self.out_features
)
orig_weight = torch.mm(butterfly_oft_mat, orig_weight)
orig_weight = orig_weight * boft_s
orig_weight = orig_weight.view(
self.out_features, self.in_features, base_layer.kernel_size[0], base_layer.kernel_size[0]
)
self.base_layer.weight.data = orig_weight
self.merged_adapters.append(active_adapter)
def unmerge(self) -> None:
"""
This method unmerges all merged adapter layers from the base weights.
"""
if not self.merged:
warnings.warn("Already unmerged. Nothing to do.")
return
while len(self.merged_adapters) > 0:
active_adapter = self.merged_adapters.pop()
if active_adapter in self.boft_R.keys():
butterfly_oft_mat, boft_s = self.get_delta_weight(active_adapter)
orig_weight = self.get_base_layer().weight.data.clone()
orig_weight = orig_weight.view(
self.in_features * self.get_base_layer().kernel_size[0] * self.get_base_layer().kernel_size[0],
self.out_features,
)
orig_weight = torch.mm(butterfly_oft_mat.t(), orig_weight)
orig_weight = orig_weight * (1 / boft_s)
orig_weight = orig_weight.view(
self.out_features,
self.in_features,
self.get_base_layer().kernel_size[0],
self.get_base_layer().kernel_size[0],
)
self.get_base_layer().weight.data = orig_weight
def get_delta_weight(self, adapter) -> tuple[torch.Tensor, torch.Tensor]:
"""
Compute the delta weight for the given adapter.
Args:
adapter (str):
The name of the adapter for which the delta weight should be computed.
"""
boft_R = self.boft_R[adapter]
boft_s = self.boft_s[adapter]
N, D, H, _ = boft_R.shape
boft_R = boft_R.view(N * D, H, H)
orth_rotate_butterfly = self.cayley_batch(boft_R)
orth_rotate_butterfly = orth_rotate_butterfly.view(N, D, H, H)
if self.fbd_cuda_available:
block_diagonal_butterfly = FastBlockDiag.apply(orth_rotate_butterfly)
else:
orth_rotate_butterfly = orth_rotate_butterfly.squeeze(0)
block_diagonal_butterfly = torch.block_diag(*torch.unbind(orth_rotate_butterfly))
block_diagonal_butterfly = block_diagonal_butterfly.unsqueeze(0)
butterfly_oft_mat_batch = torch.bmm(block_diagonal_butterfly, self.boft_P.permute(0, 2, 1))
butterfly_oft_mat_batch = torch.bmm(self.boft_P, butterfly_oft_mat_batch)
butterfly_oft_mat = butterfly_oft_mat_batch[0]
for i in range(1, butterfly_oft_mat_batch.shape[0]):
butterfly_oft_mat = butterfly_oft_mat_batch[i] @ butterfly_oft_mat
return butterfly_oft_mat, boft_s
def forward(self, x: torch.Tensor, *args: Any, **kwargs: Any) -> torch.Tensor:
previous_dtype = x.dtype
if self.disable_adapters:
if self.merged:
self.unmerge()
result = self.base_layer(x, *args, **kwargs)
elif self.merged:
result = self.base_layer(x, *args, **kwargs)
else:
boft_rotation = torch.eye(
self.in_features * self.base_layer.kernel_size[0] * self.base_layer.kernel_size[0], device=x.device
)
boft_scale = torch.ones((1, int(self.out_features)), device=x.device)
for active_adapter in self.active_adapters:
if active_adapter not in self.boft_R.keys():
continue
boft_R = self.boft_R[active_adapter]
boft_s = self.boft_s[active_adapter]
dropout = self.boft_dropout[active_adapter]
N, D, H, _ = boft_R.shape
boft_R = boft_R.view(N * D, H, H)
orth_rotate_butterfly = self.cayley_batch(boft_R)
orth_rotate_butterfly = orth_rotate_butterfly.view(N, D, H, H)
orth_rotate_butterfly = dropout(orth_rotate_butterfly)
if self.fbd_cuda_available:
block_diagonal_butterfly = FastBlockDiag.apply(orth_rotate_butterfly)
else:
orth_rotate_butterfly = orth_rotate_butterfly.squeeze(0)
block_diagonal_butterfly = torch.block_diag(*torch.unbind(orth_rotate_butterfly))
block_diagonal_butterfly = block_diagonal_butterfly.unsqueeze(0)
butterfly_oft_mat_batch = torch.bmm(block_diagonal_butterfly, self.boft_P.permute(0, 2, 1))
butterfly_oft_mat_batch = torch.bmm(self.boft_P, butterfly_oft_mat_batch)
butterfly_oft_mat = butterfly_oft_mat_batch[0]
for i in range(1, butterfly_oft_mat_batch.shape[0]):
butterfly_oft_mat = butterfly_oft_mat_batch[i] @ butterfly_oft_mat
boft_rotation = butterfly_oft_mat @ boft_rotation
boft_scale = boft_s * boft_scale
x = x.to(self.base_layer.weight.data.dtype)
orig_weight = self.base_layer.weight.data
orig_weight = orig_weight.view(
self.in_features * self.base_layer.kernel_size[0] * self.base_layer.kernel_size[0],
self.out_features,
)
rotated_weight = torch.mm(boft_rotation, orig_weight)
scaled_rotated_weight = rotated_weight * boft_scale
scaled_rotated_weight = scaled_rotated_weight.view(
self.out_features, self.in_features, self.base_layer.kernel_size[0], self.base_layer.kernel_size[0]
)
result = F.conv2d(
input=x,
weight=scaled_rotated_weight,
bias=self.base_layer.bias,
padding=self.base_layer.padding[0],
stride=self.base_layer.stride[0],
)
result = result.to(previous_dtype)
return result
def __repr__(self) -> str:
rep = super().__repr__()
return "boft." + rep