Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2023-present the HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# Based on https://github.com/THUDM/P-tuning-v2/blob/main/model/prefix_encoder.py | |
# with some refactor | |
import torch | |
class PrefixEncoder(torch.nn.Module): | |
r""" | |
The `torch.nn` model to encode the prefix. | |
Args: | |
config ([`PrefixTuningConfig`]): The configuration of the prefix encoder. | |
Example: | |
```py | |
>>> from peft import PrefixEncoder, PrefixTuningConfig | |
>>> config = PrefixTuningConfig( | |
... peft_type="PREFIX_TUNING", | |
... task_type="SEQ_2_SEQ_LM", | |
... num_virtual_tokens=20, | |
... token_dim=768, | |
... num_transformer_submodules=1, | |
... num_attention_heads=12, | |
... num_layers=12, | |
... encoder_hidden_size=768, | |
... ) | |
>>> prefix_encoder = PrefixEncoder(config) | |
``` | |
**Attributes**: | |
- **embedding** (`torch.nn.Embedding`) -- The embedding layer of the prefix encoder. | |
- **transform** (`torch.nn.Sequential`) -- The two-layer MLP to transform the prefix embeddings if | |
`prefix_projection` is `True`. | |
- **prefix_projection** (`bool`) -- Whether to project the prefix embeddings. | |
Input shape: (`batch_size`, `num_virtual_tokens`) | |
Output shape: (`batch_size`, `num_virtual_tokens`, `2*layers*hidden`) | |
""" | |
def __init__(self, config): | |
super().__init__() | |
self.prefix_projection = config.prefix_projection | |
token_dim = config.token_dim | |
num_layers = config.num_layers | |
encoder_hidden_size = config.encoder_hidden_size | |
num_virtual_tokens = config.num_virtual_tokens | |
if self.prefix_projection and not config.inference_mode: | |
# Use a two-layer MLP to encode the prefix | |
self.embedding = torch.nn.Embedding(num_virtual_tokens, token_dim) | |
self.transform = torch.nn.Sequential( | |
torch.nn.Linear(token_dim, encoder_hidden_size), | |
torch.nn.Tanh(), | |
torch.nn.Linear(encoder_hidden_size, num_layers * 2 * token_dim), | |
) | |
else: | |
self.embedding = torch.nn.Embedding(num_virtual_tokens, num_layers * 2 * token_dim) | |
def forward(self, prefix: torch.Tensor): | |
if self.prefix_projection: | |
prefix_tokens = self.embedding(prefix) | |
past_key_values = self.transform(prefix_tokens) | |
else: | |
past_key_values = self.embedding(prefix) | |
return past_key_values | |