Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2023-present the HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# Based on https://github.com/NVIDIA/NeMo/blob/main/nemo/collections/nlp/modules/common/prompt_encoder.py | |
# with some refactor | |
import warnings | |
import torch | |
from .config import PromptEncoderConfig, PromptEncoderReparameterizationType | |
class PromptEncoder(torch.nn.Module): | |
""" | |
The prompt encoder network that is used to generate the virtual token embeddings for p-tuning. | |
Args: | |
config ([`PromptEncoderConfig`]): The configuration of the prompt encoder. | |
Example: | |
```py | |
>>> from peft import PromptEncoder, PromptEncoderConfig | |
>>> config = PromptEncoderConfig( | |
... peft_type="P_TUNING", | |
... task_type="SEQ_2_SEQ_LM", | |
... num_virtual_tokens=20, | |
... token_dim=768, | |
... num_transformer_submodules=1, | |
... num_attention_heads=12, | |
... num_layers=12, | |
... encoder_reparameterization_type="MLP", | |
... encoder_hidden_size=768, | |
... ) | |
>>> prompt_encoder = PromptEncoder(config) | |
``` | |
**Attributes**: | |
- **embedding** (`torch.nn.Embedding`) -- The embedding layer of the prompt encoder. | |
- **mlp_head** (`torch.nn.Sequential`) -- The MLP head of the prompt encoder if `inference_mode=False`. | |
- **lstm_head** (`torch.nn.LSTM`) -- The LSTM head of the prompt encoder if `inference_mode=False` and | |
`encoder_reparameterization_type="LSTM"`. | |
- **token_dim** (`int`) -- The hidden embedding dimension of the base transformer model. | |
- **input_size** (`int`) -- The input size of the prompt encoder. | |
- **output_size** (`int`) -- The output size of the prompt encoder. | |
- **hidden_size** (`int`) -- The hidden size of the prompt encoder. | |
- **total_virtual_tokens** (`int`): The total number of virtual tokens of the | |
prompt encoder. | |
- **encoder_type** (Union[[`PromptEncoderReparameterizationType`], `str`]): The encoder type of the prompt | |
encoder. | |
Input shape: (`batch_size`, `total_virtual_tokens`) | |
Output shape: (`batch_size`, `total_virtual_tokens`, `token_dim`) | |
""" | |
def __init__(self, config): | |
super().__init__() | |
self.token_dim = config.token_dim | |
self.input_size = self.token_dim | |
self.output_size = self.token_dim | |
self.hidden_size = config.encoder_hidden_size | |
self.total_virtual_tokens = config.num_virtual_tokens * config.num_transformer_submodules | |
self.encoder_type = config.encoder_reparameterization_type | |
# embedding | |
self.embedding = torch.nn.Embedding(self.total_virtual_tokens, self.token_dim) | |
if not config.inference_mode: | |
if self.encoder_type == PromptEncoderReparameterizationType.LSTM: | |
lstm_dropout = config.encoder_dropout | |
num_layers = config.encoder_num_layers | |
# LSTM | |
self.lstm_head = torch.nn.LSTM( | |
input_size=self.input_size, | |
hidden_size=self.hidden_size, | |
num_layers=num_layers, | |
dropout=lstm_dropout, | |
bidirectional=True, | |
batch_first=True, | |
) | |
self.mlp_head = torch.nn.Sequential( | |
torch.nn.Linear(self.hidden_size * 2, self.hidden_size * 2), | |
torch.nn.ReLU(), | |
torch.nn.Linear(self.hidden_size * 2, self.output_size), | |
) | |
elif self.encoder_type == PromptEncoderReparameterizationType.MLP: | |
encoder_num_layers_default = PromptEncoderConfig.encoder_num_layers | |
if config.encoder_num_layers != encoder_num_layers_default: | |
warnings.warn( | |
f"for {self.encoder_type.value}, the argument `encoder_num_layers` is ignored. " | |
f"Exactly {encoder_num_layers_default} MLP layers are used." | |
) | |
layers = [ | |
torch.nn.Linear(self.input_size, self.hidden_size), | |
torch.nn.ReLU(), | |
torch.nn.Linear(self.hidden_size, self.hidden_size), | |
torch.nn.ReLU(), | |
torch.nn.Linear(self.hidden_size, self.output_size), | |
] | |
self.mlp_head = torch.nn.Sequential(*layers) | |
else: | |
raise ValueError("Prompt encoder type not recognized. Please use one of MLP (recommended) or LSTM.") | |
def forward(self, indices): | |
input_embeds = self.embedding(indices) | |
if self.encoder_type == PromptEncoderReparameterizationType.LSTM: | |
output_embeds = self.mlp_head(self.lstm_head(input_embeds)[0]) | |
elif self.encoder_type == PromptEncoderReparameterizationType.MLP: | |
output_embeds = self.mlp_head(input_embeds) | |
else: | |
raise ValueError("Prompt encoder type not recognized. Please use one of MLP (recommended) or LSTM.") | |
return output_embeds | |