Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2023-present the HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from typing import Any | |
import torch | |
from peft.import_utils import is_bnb_4bit_available, is_bnb_available | |
from .layer import IA3Layer | |
if is_bnb_available(): | |
class Linear8bitLt(torch.nn.Module, IA3Layer): | |
# (IA)^3 implemented in a dense layer | |
def __init__( | |
self, | |
base_layer: torch.nn.Module, | |
adapter_name: str, | |
is_feedforward: bool, | |
init_ia3_weights: bool = True, | |
**kwargs, | |
) -> None: | |
super().__init__() | |
IA3Layer.__init__(self, base_layer, is_feedforward=is_feedforward) | |
# Freezing the pre-trained weight matrix | |
self.get_base_layer().weight.requires_grad = False | |
self._active_adapter = adapter_name | |
self.update_layer(adapter_name, init_ia3_weights) | |
def forward(self, x: torch.Tensor, *args: Any, **kwargs: Any) -> torch.Tensor: | |
# note: no check for self.merged because merging is not supported (yet) | |
if self.disable_adapters: | |
return self.base_layer(x) | |
ia3_scaling = 1 | |
for active_adapter in self.active_adapters: | |
if active_adapter not in self.ia3_l.keys(): | |
continue | |
ia3_scaling *= self.ia3_l[active_adapter].flatten() | |
requires_conversion = (not torch.is_autocast_enabled()) and (x.dtype != torch.float32) | |
if requires_conversion: | |
x = x.float() | |
if self.is_feedforward: | |
result = self.base_layer(x * ia3_scaling) | |
expected_dtype = result.dtype | |
else: | |
result = self.base_layer(x) | |
expected_dtype = result.dtype | |
result = result * ia3_scaling | |
if requires_conversion: | |
result = result.to(expected_dtype) | |
return result | |
def __repr__(self) -> str: | |
rep = super().__repr__() | |
return "ia3." + rep | |
if is_bnb_4bit_available(): | |
class Linear4bit(torch.nn.Module, IA3Layer): | |
# IA3 implemented in a dense layer | |
def __init__( | |
self, | |
base_layer: torch.nn.Module, | |
adapter_name: str, | |
is_feedforward: bool, | |
init_ia3_weights: bool = True, | |
**kwargs, | |
) -> None: | |
super().__init__() | |
IA3Layer.__init__(self, base_layer, is_feedforward=is_feedforward) | |
# Freezing the pre-trained weight matrix | |
self.get_base_layer().weight.requires_grad = False | |
self._active_adapter = adapter_name | |
self.update_layer(adapter_name, init_ia3_weights) | |
def forward(self, x: torch.Tensor, *args: Any, **kwargs: Any) -> torch.Tensor: | |
# note: no check for self.merged because merging is not supported (yet) | |
if self.disable_adapters: | |
return self.base_layer(x) | |
ia3_scaling = 1 | |
for active_adapter in self.active_adapters: | |
if active_adapter not in self.ia3_l.keys(): | |
continue | |
ia3_scaling *= self.ia3_l[active_adapter].flatten() | |
requires_conversion = (not torch.is_autocast_enabled()) and (x.dtype != torch.float32) | |
if requires_conversion: | |
x = x.float() | |
if self.is_feedforward: | |
result = self.base_layer(x * ia3_scaling) | |
expected_dtype = result.dtype | |
else: | |
result = self.base_layer(x) | |
expected_dtype = result.dtype | |
result = result * ia3_scaling | |
result = result.clone() | |
# adalora.py and lora.py both suggest that this is necessary for 4-bit training on older versions of Pytorch. | |
# This has been duplicated here. | |
if requires_conversion: | |
result = result.to(expected_dtype) | |
return result | |
def __repr__(self) -> str: | |
rep = super().__repr__() | |
return "ia3." + rep | |