File size: 60,517 Bytes
d711508
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
# Copyright 2023-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations

import math
import warnings
from typing import Any, Optional, Union

import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers.pytorch_utils import Conv1D

from peft.tuners.tuners_utils import BaseTunerLayer, check_adapters_to_merge
from peft.utils.integrations import dequantize_bnb_weight, gather_params_ctx
from peft.utils.other import transpose

from .config import LoraConfig

from einops import rearrange

class LoraLayer(BaseTunerLayer):
    # All names of layers that may contain (trainable) adapter weights
    adapter_layer_names = ("lora_A", "lora_B", "lora_embedding_A", "lora_embedding_B")
    # All names of other parameters that may contain adapter-related parameters
    other_param_names = ("r", "lora_alpha", "scaling", "lora_dropout")

    def __init__(self, base_layer: nn.Module, **kwargs) -> None:
        self.base_layer = base_layer
        self.r = {}
        self.lora_alpha = {}
        self.scaling = {}
        self.lora_dropout = nn.ModuleDict({})
        self.lora_A = nn.ModuleDict({})
        self.lora_B = nn.ModuleDict({})
        # For Embedding layer
        self.lora_embedding_A = nn.ParameterDict({})
        self.lora_embedding_B = nn.ParameterDict({})
        # Mark the weight as unmerged
        self._disable_adapters = False
        self.merged_adapters = []
        self.use_dora: dict[str, bool] = {}
        self.lora_magnitude_vector: Optional[torch.nn.ParameterDict] = None  # for DoRA
        self._caches: dict[str, Any] = {}
        self.kwargs = kwargs

        base_layer = self.get_base_layer()
        if isinstance(base_layer, nn.Linear):
            in_features, out_features = base_layer.in_features, base_layer.out_features
        elif isinstance(base_layer, nn.Conv2d):
            in_features, out_features = base_layer.in_channels, base_layer.out_channels
        elif isinstance(base_layer, nn.Embedding):
            in_features, out_features = base_layer.num_embeddings, base_layer.embedding_dim
        elif isinstance(base_layer, Conv1D):
            in_features, out_features = (
                base_layer.weight.ds_shape if hasattr(base_layer.weight, "ds_shape") else base_layer.weight.shape
            )
        elif hasattr(base_layer, "infeatures") and hasattr(base_layer, "outfeatures"):
            # QuantLinear
            in_features, out_features = base_layer.infeatures, base_layer.outfeatures
        elif hasattr(base_layer, "input_size") and hasattr(base_layer, "output_size"):
            # Megatron ColumnParallelLinear,RowParallelLinear
            in_features, out_features = base_layer.input_size, base_layer.output_size
        elif hasattr(base_layer, "codebooks") and base_layer.__class__.__name__ == "QuantizedLinear":
            # AQLM QuantLinear
            in_features, out_features = base_layer.in_features, base_layer.out_features
        elif hasattr(base_layer, "w_bit") and base_layer.__class__.__name__ == "WQLinear_GEMM":
            # Awq layers
            in_features, out_features = base_layer.in_features, base_layer.out_features
        else:
            raise ValueError(f"Unsupported layer type {type(base_layer)}")

        self.in_features = in_features
        self.out_features = out_features

    def update_layer(
        self, adapter_name, r, lora_alpha, lora_dropout, init_lora_weights, use_rslora, use_dora: bool = False
    ):
        # This code works for linear layers, override for other layer types
        if r <= 0:
            raise ValueError(f"`r` should be a positive integer value but the value passed is {r}")

        self.r[adapter_name] = r
        self.lora_alpha[adapter_name] = lora_alpha
        if lora_dropout > 0.0:
            lora_dropout_layer = nn.Dropout(p=lora_dropout)
        else:
            lora_dropout_layer = nn.Identity()

        self.lora_dropout.update(nn.ModuleDict({adapter_name: lora_dropout_layer}))
        # Actual trainable parameters
        self.lora_A[adapter_name] = nn.Linear(self.in_features, r, bias=False)
        self.lora_B[adapter_name] = nn.Linear(r, self.out_features, bias=False)
        if use_rslora:
            self.scaling[adapter_name] = lora_alpha / math.sqrt(r)
        else:
            self.scaling[adapter_name] = lora_alpha / r

        if init_lora_weights == "loftq":
            self.loftq_init(adapter_name)
        elif init_lora_weights:
            self.reset_lora_parameters(adapter_name, init_lora_weights)

        # check weight and qweight (for GPTQ)
        for weight_name in ("weight", "qweight"):
            weight = getattr(self.get_base_layer(), weight_name, None)
            if weight is not None:
                # the layer is already completely initialized, this is an update
                if weight.dtype.is_floating_point or weight.dtype.is_complex:
                    self.to(weight.device, dtype=weight.dtype)
                else:
                    self.to(weight.device)
                break

        if use_dora:
            self.dora_init(adapter_name)
            self.use_dora[adapter_name] = True
        else:
            self.use_dora[adapter_name] = False

        self.set_adapter(self.active_adapters)

    def reset_lora_parameters(self, adapter_name, init_lora_weights):
        if init_lora_weights is False:
            return

        if adapter_name in self.lora_A.keys():
            if init_lora_weights is True:
                # initialize A the same way as the default for nn.Linear and B to zero
                # https://github.com/microsoft/LoRA/blob/a0a92e0f26c067cf94747bdbf1ce73793fa44d19/loralib/layers.py#L124
                nn.init.kaiming_uniform_(self.lora_A[adapter_name].weight, a=math.sqrt(5))
            elif init_lora_weights.lower() == "gaussian":
                nn.init.normal_(self.lora_A[adapter_name].weight, std=1 / self.r[adapter_name])
            else:
                raise ValueError(f"Unknown initialization {init_lora_weights=}")
            nn.init.zeros_(self.lora_B[adapter_name].weight)
        if adapter_name in self.lora_embedding_A.keys():
            # initialize a the same way as the default for nn.linear and b to zero
            nn.init.zeros_(self.lora_embedding_A[adapter_name])
            nn.init.normal_(self.lora_embedding_B[adapter_name])

    def loftq_init(self, adapter_name):
        from peft.utils.loftq_utils import loftq_init

        weight = self.get_base_layer().weight
        kwargs = {
            "num_bits": self.kwargs.get("loftq_bits", 4),
            "reduced_rank": self.r[adapter_name],
            "num_iter": self.kwargs.get("loftq_iter", 1),
        }

        qweight, lora_A, lora_B = loftq_init(weight, **kwargs)
        if adapter_name in self.lora_A.keys():
            # initialize A the same way as the default for nn.Linear and B to zero
            self.lora_A[adapter_name].weight.data = lora_A
            self.lora_B[adapter_name].weight.data = lora_B
        if adapter_name in self.lora_embedding_A.keys():
            # initialize a the same way as the default for nn.linear and b to zero
            self.lora_embedding_A[adapter_name].weight.data = lora_A
            self.lora_embedding_B[adapter_name].weight.data = lora_B
        self.get_base_layer().weight.data = qweight

    def _get_weight_norm(self, weight, lora_weight, scaling) -> torch.Tensor:
        # calculate L2 norm of weight matrix, column-wise
        weight = weight + scaling * lora_weight
        weight_norm = torch.linalg.norm(weight, dim=1).to(weight.dtype)
        return weight_norm

    def dora_init(self, adapter_name: str) -> None:
        lora_A = self.lora_A[adapter_name]
        lora_B = self.lora_B[adapter_name]
        scaling = self.scaling[adapter_name]
        with gather_params_ctx(self.get_base_layer()):
            weight = self.get_base_layer().weight
            quant_state = getattr(self.get_base_layer(), "state", None)
            weight = dequantize_bnb_weight(weight, state=quant_state)  # no-op if not bnb
            if weight.data.ndim == 4:  # For handling LoRAs applied to Conv2Ds.
                lora_weight = torch.mm(lora_B.weight.flatten(start_dim=1), lora_A.weight.flatten(start_dim=1))
                lora_weight = lora_weight.reshape(weight.shape)
            else:
                lora_weight = lora_B.weight @ lora_A.weight
            weight_norm = self._get_weight_norm(weight, lora_weight, scaling)
        self.lora_magnitude_vector = nn.ParameterDict()
        self.lora_magnitude_vector[adapter_name] = nn.Parameter(weight_norm, requires_grad=True)
        # add lora_magnitude_vector to the list of learnable parameters
        self.adapter_layer_names = self.adapter_layer_names[:] + ("lora_magnitude_vector",)

    def _cache_store(self, key: str, value: Any) -> None:
        self._caches[key] = value

    def _cache_pop(self, key: str) -> Any:
        value = self._caches.pop(key)
        return value

    def _apply_dora(self, x, lora_A, lora_B, scaling, active_adapter):
        """
        For DoRA, calculate the extra output from LoRA with DoRA applied. This should be added on top of the base layer
        output.
        """
        lora_weight = lora_B.weight @ lora_A.weight
        magnitude = self.lora_magnitude_vector[active_adapter]
        weight = self.get_base_layer().weight
        quant_state = getattr(self.get_base_layer(), "state", None)
        weight = dequantize_bnb_weight(weight, state=quant_state)  # no-op if not bnb
        weight = weight.to(x.dtype)
        weight_norm = self._get_weight_norm(weight, lora_weight, scaling)
        # see section 4.3 of DoRA (https://arxiv.org/abs/2402.09353)
        # "[...] we suggest treating ||V +∆V ||_c in
        # Eq. (5) as a constant, thereby detaching it from the gradient
        # graph. This means that while ||V + ∆V ||_c dynamically
        # reflects the updates of ∆V , it won’t receive any gradient
        # during backpropagation"
        weight_norm = weight_norm.detach()
        mag_norm_scale = (magnitude / weight_norm).view(1, -1)
        result_dora = (mag_norm_scale - 1) * (
            F.linear(x, transpose(weight, self.fan_in_fan_out))
        ) + mag_norm_scale * lora_B(lora_A(x)) * scaling

        # Note: Computation could potentially be accelerated by using the code below instead of calculating X@W again.
        # This is only correct if dropout=0, otherwise results will differ:
        # https://github.com/huggingface/peft/pull/1474#issuecomment-1964682771
        # bias = self.get_base_layer().bias
        # if bias is not None:
        #     result = result - bias
        # result = mag_norm_scale * result + mag_norm_scale * lora_B(lora_A(x)) * scaling
        # if bias is not None:
        #     result = result + bias

        return result_dora

    def set_scale(self, adapter, scale):
        if adapter not in self.scaling:
            # Ignore the case where the adapter is not in the layer
            return
        self.scaling[adapter] = scale * self.lora_alpha[adapter] / self.r[adapter]

    def scale_layer(self, scale: float) -> None:
        if scale == 1:
            return

        for active_adapter in self.active_adapters:
            if active_adapter not in self.lora_A.keys():
                continue

            self.scaling[active_adapter] *= scale

    def unscale_layer(self, scale=None) -> None:
        for active_adapter in self.active_adapters:
            if active_adapter not in self.lora_A.keys():
                continue

            if scale is None:
                self.scaling[active_adapter] = self.lora_alpha[active_adapter] / self.r[active_adapter]
            else:
                self.scaling[active_adapter] /= scale

    def _check_forward_args(self, x, *args, **kwargs):
        """Check if the arguments are compatible with the configs and state of the model"""
        adapter_names = kwargs.get("adapter_names", None)
        if adapter_names is None:
            return

        if len(x) != len(adapter_names):
            msg = (
                "Length of `adapter_names` should be the same as the number of inputs, but got "
                f"{len(adapter_names)} and {len(x)} respectively."
            )
            raise ValueError(msg)

        if self.merged:
            # It is unclear what would be the right thing to do if users pass adapter_names and there are merged
            # adapters. Therefore, it is better to raise an error in this case.
            msg = "Cannot pass `adapter_names` when there are merged adapters, please call `unmerge_adapter` first."
            raise ValueError(msg)

        unique_adapters = set(self.active_adapters)
        for adapter_name in unique_adapters:
            if self.use_dora.get(adapter_name, False):
                msg = "Cannot pass `adapter_names` when DoRA is enabled."
                raise ValueError(msg)

    def _mixed_batch_forward(
        self, x: torch.Tensor, *args: Any, adapter_names: list[str], **kwargs: Any
    ) -> torch.Tensor:
        # This is a special method that handles the case when users pass the argument `adapter_names`. This is an
        # extra argument that allows mixing different adapters in the same batch at inference time.
        result = self.base_layer(x, *args, **kwargs)
        torch_result_dtype = result.dtype

        unique_adapters = set(adapter_names)
        sub_batch_indices_list = []
        for adapter in unique_adapters:
            sub_batch_indices_list.append([index for index, item in enumerate(adapter_names) if item == adapter])

        for i, active_adapter in enumerate(unique_adapters):
            if active_adapter == "__base__":
                continue
            if active_adapter not in self.lora_A.keys():
                continue

            lora_A = self.lora_A[active_adapter]
            lora_B = self.lora_B[active_adapter]
            dropout = self.lora_dropout[active_adapter]
            scaling = self.scaling[active_adapter]

            # getting the sub-batch, passing it to LoRA layers and updating the corresponding indices of the linear
            # layer output
            sub_batch = x[sub_batch_indices_list[i]].to(lora_A.weight.dtype)
            lora_output = lora_B(lora_A(dropout(sub_batch))) * scaling
            result[sub_batch_indices_list[i]] += lora_output.to(torch_result_dtype)

        return result


# Below code is based on https://github.com/microsoft/LoRA/blob/main/loralib/layers.py
# and modified to work with PyTorch FSDP


#  ------------------------------------------------------------------------------------------
#  Copyright (c) Microsoft Corporation. All rights reserved.
#  Licensed under the MIT License (MIT). See LICENSE in the repo root for license information.
#  ------------------------------------------------------------------------------------------


class Linear(nn.Module, LoraLayer):
    # Lora implemented in a dense layer
    def __init__(
        self,
        base_layer,
        adapter_name: str,
        r: int = 0,
        lora_alpha: int = 1,
        lora_dropout: float = 0.0,
        fan_in_fan_out: bool = False,  # Set this to True if the layer to replace stores weight like (fan_in, fan_out)
        is_target_conv_1d_layer: bool = False,
        init_lora_weights: Union[bool, str] = True,
        use_rslora: bool = False,
        use_dora: bool = False,
        **kwargs,
    ) -> None:
        super().__init__()
        LoraLayer.__init__(self, base_layer, **kwargs)
        self.fan_in_fan_out = fan_in_fan_out

        self._active_adapter = adapter_name
        self.update_layer(
            adapter_name,
            r,
            lora_alpha=lora_alpha,
            lora_dropout=lora_dropout,
            init_lora_weights=init_lora_weights,
            use_rslora=use_rslora,
            use_dora=use_dora,
        )
        self.is_target_conv_1d_layer = is_target_conv_1d_layer

    def merge(self, safe_merge: bool = False, adapter_names: Optional[list[str]] = None) -> None:
        """
        Merge the active adapter weights into the base weights

        Args:
            safe_merge (`bool`, *optional*):
                If True, the merge operation will be performed in a copy of the original weights and check for NaNs
                before merging the weights. This is useful if you want to check if the merge operation will produce
                NaNs. Defaults to `False`.
            adapter_names (`list[str]`, *optional*):
                The list of adapter names that should be merged. If None, all active adapters will be merged. Defaults
                to `None`.
        """
        adapter_names = check_adapters_to_merge(self, adapter_names)
        if not adapter_names:
            # no adapter to merge
            return

        for active_adapter in adapter_names:
            if active_adapter in self.lora_A.keys():
                base_layer = self.get_base_layer()
                if safe_merge:
                    # Note that safe_merge will be slower than the normal merge
                    # because of the copy operation.
                    orig_weights = base_layer.weight.data.clone()
                    delta_weight = self.get_delta_weight(active_adapter)
                    if not self.use_dora[active_adapter]:
                        orig_weights = orig_weights + delta_weight
                    else:
                        # handle dora
                        # since delta_weight already includes scaling, set it to 1 here
                        weight_norm = self._get_weight_norm(orig_weights, delta_weight, scaling=1).detach()
                        # We need to cache weight_norm because it has to be based on the original weights. We
                        # cannot calculate it on the fly based on the merged weights when unmerging because its a
                        # different value
                        self._cache_store(f"{active_adapter}-weight_norm", weight_norm)
                        dora_factor = self.lora_magnitude_vector[active_adapter] / weight_norm
                        orig_weights = dora_factor.view(-1, 1) * (orig_weights + delta_weight)

                    if not torch.isfinite(orig_weights).all():
                        raise ValueError(
                            f"NaNs detected in the merged weights. The adapter {active_adapter} seems to be broken"
                        )

                    base_layer.weight.data = orig_weights
                else:
                    delta_weight = self.get_delta_weight(active_adapter)
                    if not self.use_dora[active_adapter]:
                        base_layer.weight.data = base_layer.weight.data + delta_weight
                    else:
                        # handle dora
                        # since delta_weight already includes scaling, set it to 1 here
                        weight_norm = self._get_weight_norm(base_layer.weight, delta_weight, scaling=1).detach()
                        # We need to cache weight_norm because it has to be based on the original weights. We
                        # cannot calculate it on the fly based on the merged weights when unmerging because its a
                        # different value
                        self._cache_store(f"{active_adapter}-weight_norm", weight_norm)
                        dora_factor = self.lora_magnitude_vector[active_adapter] / weight_norm
                        new_weight = dora_factor.view(-1, 1) * (base_layer.weight.data + delta_weight)
                        base_layer.weight.data = new_weight

                self.merged_adapters.append(active_adapter)

    def unmerge(self) -> None:
        """
        This method unmerges all merged adapter layers from the base weights.
        """
        if not self.merged:
            warnings.warn("Already unmerged. Nothing to do.")
            return
        while len(self.merged_adapters) > 0:
            active_adapter = self.merged_adapters.pop()
            if active_adapter in self.lora_A.keys():
                weight = self.get_base_layer().weight
                delta_weight = self.get_delta_weight(active_adapter)
                if not self.use_dora[active_adapter]:
                    weight.data -= delta_weight
                else:
                    weight_norm = self._cache_pop(f"{active_adapter}-weight_norm")
                    dora_factor = self.lora_magnitude_vector[active_adapter] / weight_norm
                    weight_orig = weight.data / dora_factor.view(-1, 1) - delta_weight
                    weight.data = weight_orig

    def get_delta_weight(self, adapter) -> torch.Tensor:
        """
        Compute the delta weight for the given adapter.

        Args:
            adapter (str):
                The name of the adapter for which the delta weight should be computed.
        """
        device = self.lora_B[adapter].weight.device
        dtype = self.lora_B[adapter].weight.dtype

        # In case users wants to merge the adapter weights that are in
        # float16 while being on CPU, we need to cast the weights to float32, perform the merge and then cast back to
        # float16 because the `@` and matmul operation in general is not supported in torch + cpu + fp16.
        cast_to_fp32 = device.type == "cpu" and dtype == torch.float16

        weight_A = self.lora_A[adapter].weight
        weight_B = self.lora_B[adapter].weight

        if cast_to_fp32:
            weight_A = weight_A.float()
            weight_B = weight_B.float()

        output_tensor = transpose(weight_B @ weight_A, self.fan_in_fan_out) * self.scaling[adapter]

        if cast_to_fp32:
            output_tensor = output_tensor.to(dtype=dtype)

            # cast back the weights
            self.lora_A[adapter].weight.data = weight_A.to(dtype)
            self.lora_B[adapter].weight.data = weight_B.to(dtype)

        return output_tensor

    def forward(self, x: torch.Tensor, *args: Any, **kwargs: Any) -> torch.Tensor:
        self._check_forward_args(x, *args, **kwargs)
        adapter_names = kwargs.pop("adapter_names", None)

        if self.disable_adapters:
            if self.merged:
                self.unmerge()
            result = self.base_layer(x, *args, **kwargs)
        elif adapter_names is not None:
            result = self._mixed_batch_forward(x, *args, adapter_names=adapter_names, **kwargs)
        elif self.merged:
            result = self.base_layer(x, *args, **kwargs)
        else:
            result = self.base_layer(x, *args, **kwargs)
            torch_result_dtype = result.dtype
            for active_adapter in self.active_adapters:
                if active_adapter not in self.lora_A.keys():
                    continue
                lora_A = self.lora_A[active_adapter]
                lora_B = self.lora_B[active_adapter]
                dropout = self.lora_dropout[active_adapter]
                scaling = self.scaling[active_adapter]
                x = x.to(lora_A.weight.dtype)

                if not self.use_dora[active_adapter]:
                    result = result + lora_B(lora_A(dropout(x))) * scaling
                else:
                    x = dropout(x)
                    result = result + self._apply_dora(x, lora_A, lora_B, scaling, active_adapter)

            result = result.to(torch_result_dtype)

        return result

    def __repr__(self) -> str:
        rep = super().__repr__()
        return "lora." + rep


class Embedding(nn.Module, LoraLayer):
    # LoRA implemented in a Embedding layer
    def __init__(
        self,
        base_layer: nn.Module,
        adapter_name: str,
        r: int = 0,
        lora_alpha: int = 1,
        lora_dropout: float = 0.0,
        init_lora_weights: Union[bool, str] = True,
        use_rslora: bool = False,
        use_dora: bool = False,
        **kwargs,
    ) -> None:
        super().__init__()
        LoraLayer.__init__(self, base_layer)

        if use_dora:
            raise ValueError(f"{self.__class__.__name__} does not support DoRA yet, please set it to False")

        self._active_adapter = adapter_name
        self.update_layer(
            adapter_name,
            r,
            lora_alpha=lora_alpha,
            lora_dropout=lora_dropout,
            init_lora_weights=init_lora_weights,
            use_rslora=use_rslora,
            use_dora=use_dora,
        )

    def update_layer(self, adapter_name, r, lora_alpha, lora_dropout, init_lora_weights, use_rslora, use_dora):
        if r <= 0:
            raise ValueError(f"`r` should be a positive integer value but the value passed is {r}")

        self.r[adapter_name] = r
        self.lora_alpha[adapter_name] = lora_alpha
        if lora_dropout > 0.0:
            lora_dropout_layer = nn.Dropout(p=lora_dropout)
        else:
            lora_dropout_layer = nn.Identity()

        self.lora_dropout[adapter_name] = lora_dropout_layer
        # Actual trainable parameters
        weight_A = torch.randn((r, self.in_features))
        weight_B = torch.randn((self.out_features, r))
        self.lora_embedding_A[adapter_name] = nn.Parameter(weight_A)
        self.lora_embedding_B[adapter_name] = nn.Parameter(weight_B)
        if use_rslora:
            self.scaling[adapter_name] = lora_alpha / math.sqrt(r)
        else:
            self.scaling[adapter_name] = lora_alpha / r

        if init_lora_weights == "loftq":
            self.loftq_init(adapter_name)
        elif init_lora_weights:
            self.reset_lora_parameters(adapter_name, init_lora_weights)

        base_layer = self.get_base_layer()
        weight = getattr(base_layer, "weight", None)
        if weight is not None:
            # the layer is already completely initialized, this is an update
            self.to(base_layer.weight.device, dtype=weight.dtype)

        self.set_adapter(self.active_adapters)

    def merge(self, safe_merge: bool = False, adapter_names: Optional[list[str]] = None) -> None:
        """
        Merge the active adapter weights into the base weights

        Args:
            safe_merge (`bool`, *optional*):
                If True, the merge operation will be performed in a copy of the original weights and check for NaNs
                before merging the weights. This is useful if you want to check if the merge operation will produce
                NaNs. Defaults to `False`.
            adapter_names (`list[str]`, *optional*):
                The list of adapter names that should be merged. If None, all active adapters will be merged. Defaults
                to `None`.
        """
        adapter_names = check_adapters_to_merge(self, adapter_names)
        if not adapter_names:
            # no adapter to merge
            return

        for active_adapter in adapter_names:
            if active_adapter in self.lora_embedding_A.keys():
                base_layer = self.get_base_layer()
                if safe_merge:
                    # Note that safe_merge will be slower than the normal merge
                    # because of the copy operation.
                    orig_weights = base_layer.weight.data.clone()
                    orig_weights = orig_weights + self.get_delta_weight(active_adapter)

                    if not torch.isfinite(orig_weights).all():
                        raise ValueError(
                            f"NaNs detected in the merged weights. The adapter {active_adapter} seems to be broken"
                        )

                    base_layer.weight.data = orig_weights
                else:
                    base_layer.weight.data = base_layer.weight.data + self.get_delta_weight(active_adapter)
                self.merged_adapters.append(active_adapter)

    def unmerge(self) -> None:
        """
        This method unmerges all merged adapter layers from the base weights.
        """
        if not self.merged:
            warnings.warn("Already unmerged. Nothing to do.")
            return
        while len(self.merged_adapters) > 0:
            active_adapter = self.merged_adapters.pop()
            if active_adapter in self.lora_embedding_A.keys():
                self.get_base_layer().weight.data -= self.get_delta_weight(active_adapter)

    def get_delta_weight(self, adapter) -> torch.Tensor:
        """
        Compute the delta weight for the given adapter.

        Args:
            adapter (str):
                The name of the adapter for which the delta weight should be computed.
        """
        device = self.lora_embedding_B[adapter].device
        dtype = self.lora_embedding_A[adapter].dtype

        # In case users wants to merge the adapter weights that are in
        # float16 while being on CPU, we need to cast the weights to float32, perform the merge and then cast back to
        # float16 because the `@` and matmul operation in general is not supported in torch + cpu + fp16.
        cast_to_fp32 = device.type == "cpu" and dtype == torch.float16

        weight_A = self.lora_embedding_A[adapter]
        weight_B = self.lora_embedding_B[adapter]

        if cast_to_fp32:
            weight_A = weight_A.float()
            weight_B = weight_B.float()

        output_tensor = transpose(weight_B @ weight_A, True) * self.scaling[adapter]

        if cast_to_fp32:
            output_tensor = output_tensor.to(dtype=dtype)

            # cast back the weights
            self.lora_embedding_A[adapter] = weight_A.to(dtype)
            self.lora_embedding_B[adapter] = weight_B.to(dtype)

        return output_tensor

    def _mixed_batch_forward(
        self, x: torch.Tensor, *args: Any, adapter_names: list[str], **kwargs: Any
    ) -> torch.Tensor:
        # This is a special method that handles the case when users pass the argument `adapter_names`. This is an
        # extra argument that allows mixing different adapters in the same batch at inference time.
        result = self.base_layer(x, *args, **kwargs)

        unique_adapters = set(adapter_names)
        sub_batch_indices_list = []
        for adapter in unique_adapters:
            sub_batch_indices_list.append([index for index, item in enumerate(adapter_names) if item == adapter])

        for i, active_adapter in enumerate(unique_adapters):
            if active_adapter == "__base__":
                continue
            if active_adapter not in self.lora_embedding_A.keys():
                continue

            embedding_A = self.lora_embedding_A[active_adapter].T
            embedding_B = self.lora_embedding_B[active_adapter].T
            scaling = self.scaling[active_adapter]

            # getting the sub-batch, passing it to LoRA layers and updating the corresponding indices of the linear
            # layer output
            sub_batch = x[sub_batch_indices_list[i]]
            after_A = self._embed(sub_batch, embedding_A)
            result[sub_batch_indices_list[i]] += (after_A @ embedding_B) * scaling

        return result

    def _embed(self, input: torch.Tensor, weight: torch.Tensor) -> torch.Tensor:
        base_layer = self.get_base_layer()
        return F.embedding(
            input,
            weight,
            padding_idx=base_layer.padding_idx,
            max_norm=base_layer.max_norm,
            norm_type=base_layer.norm_type,
            scale_grad_by_freq=base_layer.scale_grad_by_freq,
            sparse=base_layer.sparse,
        )

    def forward(self, x: torch.Tensor, *args: Any, **kwargs: Any) -> torch.Tensor:
        # TODO: no dtype conversion here, unlike in Linear, is that correct?
        self._check_forward_args(x, *args, **kwargs)
        adapter_names = kwargs.pop("adapter_names", None)

        if self.disable_adapters:
            if self.merged:
                self.unmerge()
            result = self.base_layer(x, *args, **kwargs)
        elif adapter_names is not None:
            result = self._mixed_batch_forward(x, *args, adapter_names=adapter_names, **kwargs)
        elif self.merged:
            result = self.base_layer(x, *args, **kwargs)
        else:
            result = self.base_layer(x, *args, **kwargs)
            torch_result_dtype = result.dtype
            for active_adapter in self.active_adapters:
                if active_adapter not in self.lora_embedding_A:
                    continue
                embedding_A = self.lora_embedding_A[active_adapter].T
                embedding_B = self.lora_embedding_B[active_adapter].T
                scaling = self.scaling[active_adapter]
                after_A = self._embed(x, embedding_A)
                result = result + (after_A @ embedding_B) * scaling
            result = result.to(torch_result_dtype)

        return result

    def __repr__(self) -> str:
        rep = super().__repr__()
        return "lora." + rep


class Conv2d(nn.Module, LoraLayer):
    # Lora implemented in a conv2d layer
    def __init__(
        self,
        base_layer: nn.Module,
        adapter_name: str,
        r: int = 0,
        lora_alpha: int = 1,
        lora_dropout: float = 0.0,
        init_lora_weights: Union[bool, str] = True,
        use_rslora: bool = False,
        use_dora: bool = False,
        **kwargs,
    ) -> None:
        super().__init__()
        LoraLayer.__init__(self, base_layer)

        self._active_adapter = adapter_name
        self.update_layer(
            adapter_name,
            r,
            lora_alpha=lora_alpha,
            lora_dropout=lora_dropout,
            init_lora_weights=init_lora_weights,
            use_rslora=use_rslora,
            use_dora=use_dora,
        )

    def update_layer(self, adapter_name, r, lora_alpha, lora_dropout, init_lora_weights, use_rslora, use_dora):
        if r <= 0:
            raise ValueError(f"`r` should be a positive integer value but the value passed is {r}")

        self.r[adapter_name] = r
        self.lora_alpha[adapter_name] = lora_alpha
        if lora_dropout > 0.0:
            lora_dropout_layer = nn.Dropout(p=lora_dropout)
        else:
            lora_dropout_layer = nn.Identity()

        self.lora_dropout[adapter_name] = lora_dropout_layer
        # Actual trainable parameters
        base_layer = self.get_base_layer()
        kernel_size = base_layer.kernel_size
        stride = base_layer.stride
        padding = base_layer.padding
        self.lora_A[adapter_name] = nn.Conv2d(self.in_features, r, kernel_size, stride, padding, bias=False)
        self.lora_B[adapter_name] = nn.Conv2d(r, self.out_features, (1, 1), (1, 1), bias=False)
        if use_rslora:
            self.scaling[adapter_name] = lora_alpha / math.sqrt(r)
        else:
            self.scaling[adapter_name] = lora_alpha / r

        if init_lora_weights == "loftq":
            self.loftq_init(adapter_name)
        elif init_lora_weights:
            self.reset_lora_parameters(adapter_name, init_lora_weights)

        weight = getattr(base_layer, "weight", None)
        if weight is not None:
            # the layer is already completely initialized, this is an update
            self.to(base_layer.weight.device, dtype=weight.dtype)

        if use_dora:
            self.dora_init(adapter_name)
            self.use_dora[adapter_name] = True
        else:
            self.use_dora[adapter_name] = False

        self.set_adapter(self.active_adapters)

    def merge(self, safe_merge: bool = False, adapter_names: Optional[list[str]] = None) -> None:
        """
        Merge the active adapter weights inside the base weights

        Args:
            safe_merge (`bool`, *optional*):
                If True, the merge operation will be performed in a copy of the original weights and check for NaNs
                before merging the weights. This is useful if you want to check if the merge operation will produce
                NaNs. Defaults to `False`.
            adapter_names (`list[str]`, *optional*):
                The list of adapter names that should be merged. If None, all active adapters will be merged. Defaults
                to `None`.
        """
        adapter_names = check_adapters_to_merge(self, adapter_names)
        if not adapter_names:
            # no adapter to merge
            return

        for active_adapter in adapter_names:
            if active_adapter in self.lora_A.keys():
                base_layer = self.get_base_layer()
                if safe_merge:
                    # Note that safe_merge will be slower than the normal merge
                    # because of the copy operation.
                    orig_weights = base_layer.weight.data.clone()
                    delta_weight = self.get_delta_weight(active_adapter)

                    if not self.use_dora[active_adapter]:
                        orig_weights = orig_weights + delta_weight
                    else:
                        # handle dora
                        # since delta_weight already includes scaling, set it to 1 here
                        weight_norm = self._get_weight_norm(orig_weights, delta_weight, scaling=1).detach()
                        # We need to cache weight_norm because it has to be based on the original weights. We
                        # cannot calculate it on the fly based on the merged weights when unmerging because its a
                        # different value
                        self._cache_store(f"{active_adapter}-weight_norm", weight_norm)
                        dora_factor = self.lora_magnitude_vector[active_adapter] / weight_norm
                        orig_weights = dora_factor.view(-1, 1, 1, 1) * (orig_weights + delta_weight)

                    if not torch.isfinite(orig_weights).all():
                        raise ValueError(
                            f"NaNs detected in the merged weights. The adapter {active_adapter} seems to be broken"
                        )
                    base_layer.weight.data = orig_weights
                else:
                    delta_weight = self.get_delta_weight(active_adapter)
                    if not self.use_dora[active_adapter]:
                        base_layer.weight.data = base_layer.weight.data + delta_weight
                    else:
                        # handle dora
                        # since delta_weight already includes scaling, set it to 1 here
                        weight_norm = self._get_weight_norm(base_layer.weight, delta_weight, scaling=1).detach()
                        # We need to cache weight_norm because it has to be based on the original weights. We
                        # cannot calculate it on the fly based on the merged weights when unmerging because its a
                        # different value
                        self._cache_store(f"{active_adapter}-weight_norm", weight_norm)
                        dora_factor = self.lora_magnitude_vector[active_adapter] / weight_norm
                        new_weight = dora_factor.view(-1, 1, 1, 1) * (base_layer.weight.data + delta_weight)
                        base_layer.weight.data = new_weight

                self.merged_adapters.append(active_adapter)

    def unmerge(self) -> None:
        """
        This method unmerges all merged adapter layers from the base weights.
        """
        if not self.merged:
            warnings.warn("Already unmerged. Nothing to do.")
            return
        while len(self.merged_adapters) > 0:
            active_adapter = self.merged_adapters.pop()
            if active_adapter in self.lora_A.keys():
                weight = self.get_base_layer().weight
                delta_weight = self.get_delta_weight(active_adapter)
                if not self.use_dora[active_adapter]:
                    weight.data -= delta_weight
                else:
                    weight_norm = self._cache_pop(f"{active_adapter}-weight_norm")
                    dora_factor = self.lora_magnitude_vector[active_adapter] / weight_norm
                    weight_orig = weight.data / dora_factor.view(-1, 1, 1, 1) - delta_weight
                    weight.data = weight_orig

    def get_delta_weight(self, adapter) -> torch.Tensor:
        """
        Compute the delta weight for the given adapter.

        Args:
            adapter (str):
                The name of the adapter for which the delta weight should be computed.
        """
        device = self.lora_B[adapter].weight.device
        dtype = self.lora_A[adapter].weight.dtype

        # In case users wants to merge the adapter weights that are in
        # float16 while being on CPU, we need to cast the weights to float32, perform the merge and then cast back to
        # float16 because the `@` and matmul operation in general is not supported in torch + cpu + fp16.
        cast_to_fp32 = device.type == "cpu" and dtype == torch.float16

        weight_A = self.lora_A[adapter].weight
        weight_B = self.lora_B[adapter].weight

        if cast_to_fp32:
            weight_A = weight_A.float()
            weight_B = weight_B.float()

        # https://github.com/bmaltais/kohya_ss/blob/feb6728762a8f463d15ba936d189d4c3abfaa1ab/networks/lora.py#L117
        if self.get_base_layer().weight.size()[2:4] == (1, 1):
            # conv2d 1x1
            output_tensor = (weight_B.squeeze(3).squeeze(2) @ weight_A.squeeze(3).squeeze(2)).unsqueeze(2).unsqueeze(
                3
            ) * self.scaling[adapter]
        else:
            # conv2d 3x3
            output_tensor = (
                F.conv2d(
                    weight_A.permute(1, 0, 2, 3),
                    weight_B,
                ).permute(1, 0, 2, 3)
                * self.scaling[adapter]
            )

        if cast_to_fp32:
            output_tensor = output_tensor.to(dtype=dtype)

            # cast back the weights
            self.lora_A[adapter].weight.data = weight_A.to(dtype)
            self.lora_B[adapter].weight.data = weight_B.to(dtype)

        return output_tensor

    def _get_weight_norm(self, weight, lora_weight, scaling) -> torch.Tensor:
        # calculate L2 norm of weight matrix, channel-wise
        weight = weight + scaling * lora_weight
        # the following is needed to have compatibility with the 4D weight tensors of Conv2D
        weight_norm = weight.norm(p=2, dim=(1, 2, 3), keepdim=True).transpose(1, 0)
        return weight_norm

    def _apply_dora(self, x, lora_A, lora_B, scaling, active_adapter):
        """
        For DoRA, calculate the extra output from LoRA with DoRA applied. This should be added on top of the base layer
        output.
        """
        base_layer = self.get_base_layer()
        weight = base_layer.weight
        lora_weight = torch.mm(lora_B.weight.flatten(start_dim=1), lora_A.weight.flatten(start_dim=1))
        lora_weight = lora_weight.reshape(weight.shape)
        magnitude = self.lora_magnitude_vector[active_adapter]
        weight_norm = self._get_weight_norm(weight, lora_weight, scaling)
        # see section 4.3 of DoRA (https://arxiv.org/abs/2402.09353)
        # "[...] we suggest treating ||V +∆V ||_c in
        # Eq. (5) as a constant, thereby detaching it from the gradient
        # graph. This means that while ||V + ∆V ||_c dynamically
        # reflects the updates of ∆V , it won’t receive any gradient
        # during backpropagation"
        weight_norm = weight_norm.detach()
        mag_norm_scale = magnitude / weight_norm
        result_dora = (mag_norm_scale - 1) * (
            F.conv2d(
                x,
                weight,
                bias=None,
                stride=base_layer.stride,
                padding=base_layer.padding,
                dilation=base_layer.dilation,
                groups=base_layer.groups,
            )
        ) + mag_norm_scale * lora_B(lora_A(x)) * scaling

        return result_dora

    def forward(self, x: torch.Tensor, *args, **kwargs) -> torch.Tensor:
        self._check_forward_args(x, *args, **kwargs)
        adapter_names = kwargs.pop("adapter_names", None)

        if self.disable_adapters:
            if self.merged:
                self.unmerge()
            result = self.base_layer(x, *args, **kwargs)
        elif adapter_names is not None:
            result = self._mixed_batch_forward(x, *args, adapter_names=adapter_names, **kwargs)
        elif self.merged:
            result = self.base_layer(x, *args, **kwargs)
        else:

            result = self.base_layer(x, *args, **kwargs)
            torch_result_dtype = result.dtype

            for active_adapter in self.active_adapters:
                if active_adapter not in self.lora_A.keys():
                    continue
                lora_A = self.lora_A[active_adapter]
                lora_B = self.lora_B[active_adapter]
                dropout = self.lora_dropout[active_adapter]
                scaling = self.scaling[active_adapter]
                x = x.to(lora_A.weight.dtype)

                if not self.use_dora[active_adapter]:
                    result = result + lora_B(lora_A(dropout(x))) * scaling
                else:
                    x = dropout(x)
                    result = result + self._apply_dora(x, lora_A, lora_B, scaling, active_adapter)

        return result

    def __repr__(self) -> str:
        rep = super().__repr__()
        return "lora." + rep


class InflatedConv3d(nn.Module, LoraLayer):
    # Lora implemented in a conv2d layer
    def __init__(
        self,
        base_layer: nn.Module,
        adapter_name: str,
        r: int = 0,
        lora_alpha: int = 1,
        lora_dropout: float = 0.0,
        init_lora_weights: Union[bool, str] = True,
        use_rslora: bool = False,
        use_dora: bool = False,
        **kwargs,
    ) -> None:
        super().__init__()
        LoraLayer.__init__(self, base_layer)

        self._active_adapter = adapter_name
        self.update_layer(
            adapter_name,
            r,
            lora_alpha=lora_alpha,
            lora_dropout=lora_dropout,
            init_lora_weights=init_lora_weights,
            use_rslora=use_rslora,
            use_dora=use_dora,
        )

    def update_layer(self, adapter_name, r, lora_alpha, lora_dropout, init_lora_weights, use_rslora, use_dora):
        if r <= 0:
            raise ValueError(f"`r` should be a positive integer value but the value passed is {r}")

        self.r[adapter_name] = r
        self.lora_alpha[adapter_name] = lora_alpha
        if lora_dropout > 0.0:
            lora_dropout_layer = nn.Dropout(p=lora_dropout)
        else:
            lora_dropout_layer = nn.Identity()

        self.lora_dropout[adapter_name] = lora_dropout_layer
        # Actual trainable parameters
        base_layer = self.get_base_layer()
        kernel_size = base_layer.kernel_size
        stride = base_layer.stride
        padding = base_layer.padding
        self.lora_A[adapter_name] = nn.Conv2d(self.in_features, r, kernel_size, stride, padding, bias=False)
        self.lora_B[adapter_name] = nn.Conv2d(r, self.out_features, (1, 1), (1, 1), bias=False)
        if use_rslora:
            self.scaling[adapter_name] = lora_alpha / math.sqrt(r)
        else:
            self.scaling[adapter_name] = lora_alpha / r

        if init_lora_weights == "loftq":
            self.loftq_init(adapter_name)
        elif init_lora_weights:
            self.reset_lora_parameters(adapter_name, init_lora_weights)

        weight = getattr(base_layer, "weight", None)
        if weight is not None:
            # the layer is already completely initialized, this is an update
            self.to(base_layer.weight.device, dtype=weight.dtype)

        if use_dora:
            self.dora_init(adapter_name)
            self.use_dora[adapter_name] = True
        else:
            self.use_dora[adapter_name] = False

        self.set_adapter(self.active_adapters)

    def merge(self, safe_merge: bool = False, adapter_names: Optional[list[str]] = None) -> None:
        """
        Merge the active adapter weights inside the base weights

        Args:
            safe_merge (`bool`, *optional*):
                If True, the merge operation will be performed in a copy of the original weights and check for NaNs
                before merging the weights. This is useful if you want to check if the merge operation will produce
                NaNs. Defaults to `False`.
            adapter_names (`list[str]`, *optional*):
                The list of adapter names that should be merged. If None, all active adapters will be merged. Defaults
                to `None`.
        """
        adapter_names = check_adapters_to_merge(self, adapter_names)
        if not adapter_names:
            # no adapter to merge
            return

        for active_adapter in adapter_names:
            if active_adapter in self.lora_A.keys():
                base_layer = self.get_base_layer()
                if safe_merge:
                    # Note that safe_merge will be slower than the normal merge
                    # because of the copy operation.
                    orig_weights = base_layer.weight.data.clone()
                    delta_weight = self.get_delta_weight(active_adapter)

                    if not self.use_dora[active_adapter]:
                        orig_weights = orig_weights + delta_weight
                    else:
                        # handle dora
                        # since delta_weight already includes scaling, set it to 1 here
                        weight_norm = self._get_weight_norm(orig_weights, delta_weight, scaling=1).detach()
                        # We need to cache weight_norm because it has to be based on the original weights. We
                        # cannot calculate it on the fly based on the merged weights when unmerging because its a
                        # different value
                        self._cache_store(f"{active_adapter}-weight_norm", weight_norm)
                        dora_factor = self.lora_magnitude_vector[active_adapter] / weight_norm
                        orig_weights = dora_factor.view(-1, 1, 1, 1) * (orig_weights + delta_weight)

                    if not torch.isfinite(orig_weights).all():
                        raise ValueError(
                            f"NaNs detected in the merged weights. The adapter {active_adapter} seems to be broken"
                        )
                    base_layer.weight.data = orig_weights
                else:
                    delta_weight = self.get_delta_weight(active_adapter)
                    if not self.use_dora[active_adapter]:
                        base_layer.weight.data = base_layer.weight.data + delta_weight
                    else:
                        # handle dora
                        # since delta_weight already includes scaling, set it to 1 here
                        weight_norm = self._get_weight_norm(base_layer.weight, delta_weight, scaling=1).detach()
                        # We need to cache weight_norm because it has to be based on the original weights. We
                        # cannot calculate it on the fly based on the merged weights when unmerging because its a
                        # different value
                        self._cache_store(f"{active_adapter}-weight_norm", weight_norm)
                        dora_factor = self.lora_magnitude_vector[active_adapter] / weight_norm
                        new_weight = dora_factor.view(-1, 1, 1, 1) * (base_layer.weight.data + delta_weight)
                        base_layer.weight.data = new_weight

                self.merged_adapters.append(active_adapter)

    def unmerge(self) -> None:
        """
        This method unmerges all merged adapter layers from the base weights.
        """
        if not self.merged:
            warnings.warn("Already unmerged. Nothing to do.")
            return
        while len(self.merged_adapters) > 0:
            active_adapter = self.merged_adapters.pop()
            if active_adapter in self.lora_A.keys():
                weight = self.get_base_layer().weight
                delta_weight = self.get_delta_weight(active_adapter)
                if not self.use_dora[active_adapter]:
                    weight.data -= delta_weight
                else:
                    weight_norm = self._cache_pop(f"{active_adapter}-weight_norm")
                    dora_factor = self.lora_magnitude_vector[active_adapter] / weight_norm
                    weight_orig = weight.data / dora_factor.view(-1, 1, 1, 1) - delta_weight
                    weight.data = weight_orig

    def get_delta_weight(self, adapter) -> torch.Tensor:
        """
        Compute the delta weight for the given adapter.

        Args:
            adapter (str):
                The name of the adapter for which the delta weight should be computed.
        """
        device = self.lora_B[adapter].weight.device
        dtype = self.lora_A[adapter].weight.dtype

        # In case users wants to merge the adapter weights that are in
        # float16 while being on CPU, we need to cast the weights to float32, perform the merge and then cast back to
        # float16 because the `@` and matmul operation in general is not supported in torch + cpu + fp16.
        cast_to_fp32 = device.type == "cpu" and dtype == torch.float16

        weight_A = self.lora_A[adapter].weight
        weight_B = self.lora_B[adapter].weight

        if cast_to_fp32:
            weight_A = weight_A.float()
            weight_B = weight_B.float()

        # https://github.com/bmaltais/kohya_ss/blob/feb6728762a8f463d15ba936d189d4c3abfaa1ab/networks/lora.py#L117
        if self.get_base_layer().weight.size()[2:4] == (1, 1):
            # conv2d 1x1
            output_tensor = (weight_B.squeeze(3).squeeze(2) @ weight_A.squeeze(3).squeeze(2)).unsqueeze(2).unsqueeze(
                3
            ) * self.scaling[adapter]
        else:
            # conv2d 3x3
            output_tensor = (
                F.conv2d(
                    weight_A.permute(1, 0, 2, 3),
                    weight_B,
                ).permute(1, 0, 2, 3)
                * self.scaling[adapter]
            )

        if cast_to_fp32:
            output_tensor = output_tensor.to(dtype=dtype)

            # cast back the weights
            self.lora_A[adapter].weight.data = weight_A.to(dtype)
            self.lora_B[adapter].weight.data = weight_B.to(dtype)

        return output_tensor

    def _get_weight_norm(self, weight, lora_weight, scaling) -> torch.Tensor:
        # calculate L2 norm of weight matrix, channel-wise
        weight = weight + scaling * lora_weight
        # the following is needed to have compatibility with the 4D weight tensors of Conv2D
        weight_norm = weight.norm(p=2, dim=(1, 2, 3), keepdim=True).transpose(1, 0)
        return weight_norm

    def _apply_dora(self, x, lora_A, lora_B, scaling, active_adapter):
        """
        For DoRA, calculate the extra output from LoRA with DoRA applied. This should be added on top of the base layer
        output.
        """
        base_layer = self.get_base_layer()
        weight = base_layer.weight
        lora_weight = torch.mm(lora_B.weight.flatten(start_dim=1), lora_A.weight.flatten(start_dim=1))
        lora_weight = lora_weight.reshape(weight.shape)
        magnitude = self.lora_magnitude_vector[active_adapter]
        weight_norm = self._get_weight_norm(weight, lora_weight, scaling)
        # see section 4.3 of DoRA (https://arxiv.org/abs/2402.09353)
        # "[...] we suggest treating ||V +∆V ||_c in
        # Eq. (5) as a constant, thereby detaching it from the gradient
        # graph. This means that while ||V + ∆V ||_c dynamically
        # reflects the updates of ∆V , it won’t receive any gradient
        # during backpropagation"
        weight_norm = weight_norm.detach()
        mag_norm_scale = magnitude / weight_norm
        result_dora = (mag_norm_scale - 1) * (
            F.conv2d(
                x,
                weight,
                bias=None,
                stride=base_layer.stride,
                padding=base_layer.padding,
                dilation=base_layer.dilation,
                groups=base_layer.groups,
            )
        ) + mag_norm_scale * lora_B(lora_A(x)) * scaling

        return result_dora

    def forward(self, x: torch.Tensor, *args, **kwargs) -> torch.Tensor:
        self._check_forward_args(x, *args, **kwargs)
        adapter_names = kwargs.pop("adapter_names", None)
        ori_dim = x.ndim
        if ori_dim == 5: 
            frames = x.shape[2]
            x = rearrange(x, "b c f h w -> (b f) c h w")

        if self.disable_adapters:
            if self.merged:
                self.unmerge()
            result = self.base_layer(x, *args, **kwargs)
        elif adapter_names is not None:
            result = self._mixed_batch_forward(x, *args, adapter_names=adapter_names, **kwargs)
        elif self.merged:
            result = self.base_layer(x, *args, **kwargs)
        else:
            
            result = self.base_layer(x, *args, **kwargs)
            torch_result_dtype = result.dtype

            for active_adapter in self.active_adapters:
                if active_adapter not in self.lora_A.keys():
                    continue
                lora_A = self.lora_A[active_adapter]
                lora_B = self.lora_B[active_adapter]
                dropout = self.lora_dropout[active_adapter]
                scaling = self.scaling[active_adapter]
                x = x.to(lora_A.weight.dtype)

                if not self.use_dora[active_adapter]:
                    result = result + lora_B(lora_A(dropout(x))) * scaling
                else:
                    x = dropout(x)
                    result = result + self._apply_dora(x, lora_A, lora_B, scaling, active_adapter)

            result = result.to(torch_result_dtype)
        if ori_dim == 5: 
            result = rearrange(result, "(b f) c h w -> b c f h w", f=frames)
        return result

    def __repr__(self) -> str:
        rep = super().__repr__()
        return "lora." + rep


def dispatch_default(
    target: torch.nn.Module,
    adapter_name: str,
    lora_config: LoraConfig,
    **kwargs,
) -> Optional[torch.nn.Module]:
    new_module = None

    if isinstance(target, BaseTunerLayer):
        target_base_layer = target.get_base_layer()
    else:
        target_base_layer = target

    if isinstance(target_base_layer, torch.nn.Embedding):
        embedding_kwargs = kwargs.copy()
        embedding_kwargs.pop("fan_in_fan_out", None)
        embedding_kwargs.update(lora_config.loftq_config)
        new_module = Embedding(target, adapter_name, **embedding_kwargs)
    elif 'InflatedConv3d' in str(type(target_base_layer)):
        kwargs.update(lora_config.loftq_config)
        new_module = InflatedConv3d(target, adapter_name, **kwargs)
    elif isinstance(target_base_layer, torch.nn.Conv2d):
        kwargs.update(lora_config.loftq_config)
        new_module = Conv2d(target, adapter_name, **kwargs)
    elif isinstance(target_base_layer, torch.nn.Linear):
        if kwargs["fan_in_fan_out"]:
            warnings.warn(
                "fan_in_fan_out is set to True but the target module is `torch.nn.Linear`. "
                "Setting fan_in_fan_out to False."
            )
            kwargs["fan_in_fan_out"] = lora_config.fan_in_fan_out = False
        kwargs.update(lora_config.loftq_config)
        new_module = Linear(target, adapter_name, **kwargs)
    elif isinstance(target_base_layer, Conv1D):
        if not kwargs["fan_in_fan_out"]:
            warnings.warn(
                "fan_in_fan_out is set to False but the target module is `Conv1D`. " "Setting fan_in_fan_out to True."
            )
            kwargs["fan_in_fan_out"] = lora_config.fan_in_fan_out = True
        kwargs.update(lora_config.loftq_config)
        new_module = Linear(target, adapter_name, is_target_conv_1d_layer=True, **kwargs)

    return new_module