File size: 3,969 Bytes
d711508
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
# Copyright 2023-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import Any, Optional

import torch

from peft.tuners.lora.layer import LoraLayer
from peft.tuners.tuners_utils import BaseTunerLayer
from peft.utils import get_auto_gptq_quant_linear


class QuantLinear(torch.nn.Module, LoraLayer):
    def __init__(
        self,
        base_layer,
        adapter_name: str,
        r: int = 0,
        lora_alpha: int = 1,
        lora_dropout: float = 0.0,
        init_lora_weights: bool = True,
        use_rslora: bool = False,
        use_dora: bool = False,
        **kwargs,
    ):
        super().__init__()
        LoraLayer.__init__(self, base_layer)

        if use_dora:
            raise ValueError(f"{self.__class__.__name__} does not support DoRA yet, please set it to False")

        # self.base_layer and self.quant_linear_module are the same; we need the former for consistency and the latter
        # for backwards compatibility
        self.quant_linear_module = base_layer
        self._active_adapter = adapter_name
        self.update_layer(
            adapter_name,
            r,
            lora_alpha=lora_alpha,
            lora_dropout=lora_dropout,
            init_lora_weights=init_lora_weights,
            use_rslora=use_rslora,
            use_dora=use_dora,
        )

    def forward(self, x: torch.Tensor):
        # note: logic differs from default Linear because merging is not supported
        result = self.quant_linear_module(x)

        if self.disable_adapters:
            return result

        for active_adapter in self.active_adapters:
            if active_adapter not in self.lora_A.keys():
                continue
            lora_A = self.lora_A[active_adapter]
            lora_B = self.lora_B[active_adapter]
            dropout = self.lora_dropout[active_adapter]
            scaling = self.scaling[active_adapter]

            requires_conversion = not torch.is_autocast_enabled()
            if requires_conversion:
                expected_dtype = result.dtype
                x = x.to(lora_A.weight.dtype)

            output = lora_B(lora_A(dropout(x)))
            if requires_conversion:
                output = output.to(expected_dtype)
            output = output * scaling
            result += output
        return result

    def __repr__(self) -> str:
        rep = super().__repr__()
        return "lora." + rep

    # TODO: Check if it is better as suggested by users https://github.com/PanQiWei/AutoGPTQ/pull/102
    # def reset_lora_parameters(self, adapter_name):
    #     if adapter_name in self.lora_A.keys():
    #         torch.nn.init.xavier_uniform_(self.lora_A[adapter_name].weight)
    #         torch.nn.init.zeros_(self.lora_B[adapter_name].weight)


def dispatch_gptq(
    target: torch.nn.Module,
    adapter_name: str,
    **kwargs: Any,
) -> Optional[torch.nn.Module]:
    new_module = None

    if isinstance(target, BaseTunerLayer):
        target_base_layer = target.get_base_layer()
    else:
        target_base_layer = target

    gptq_quantization_config = kwargs.get("gptq_quantization_config", None)
    AutoGPTQQuantLinear = get_auto_gptq_quant_linear(gptq_quantization_config)

    if AutoGPTQQuantLinear is not None and isinstance(target_base_layer, AutoGPTQQuantLinear):
        new_module = QuantLinear(target, adapter_name, **kwargs)
        target.qweight = target_base_layer.qweight

    return new_module